Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 15–20, assume that random guesses are made for eight multiple choice questions on an SAT test, so that there are n = 8 trials, each with probability of success (correct) given by p = 0.20. Find the indicated probability for the number of correct answers.

Find the probability of no correct answers.

Short Answer

Expert verified

The probability of getting no correct answers is equal to 0.168.

Step by step solution

01

Given information

A set of eight multiple-choice questions are answered in the SAT. The probability of a correct answer is given to be equal to 0.20.

02

Calculate the required probability

Let X denote the number of correct answers.

Thus, the number of trials (n) is given to be equal to eight.

The probability of success (getting a correct answer) is p= 0.20.

The probability of failure (getting a wrong answer) is calculated below:

q=1-p=1-0.20=0.80

The number of successes required in eight trials should be x=0.

The binomial probability formula is as follows:

PX=x=nCxpxqn-x

By using the binomial probability formula, the probability of getting no correct answer is computed below:

PX=0=8C00.2000.808-0=8!0!8-0!×0.20×0.808=0.1677720.168

Therefore, the probability of getting no correct answers is equal to 0.168.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Significance with Range Rule of Thumb. In Exercises 29 and 30, assume that different groups of couples use the XSORT method of gender selection and each couple gives birth to one baby. The XSORT method is designed to increase the likelihood that a baby will be a girl, but assume that the method has no effect, so the probability of a girl is 0.5.

Gender Selection Assume that the groups consist of 36 couples.

a.Find the mean and standard deviation for the numbers of girls in groups of 36 births.

b. Use the range rule of thumb to find the values separating results that are significantly low or significantly high.

c. Is the result of 26 girls a result that is significantly high? What does it suggest about the effectiveness of the XSORT method?

In Exercises 9–16, use the Poisson distribution to find the indicated probabilities.

Births In a recent year, NYU-Langone Medical Center had 4221 births. Find the mean number of births per day, then use that result to find the probability that in a day, there are 15 births. Does it appear likely that on any given day, there will be exactly 15 births?

In Exercises 9–16, use the Poisson distribution to find the indicated probabilities.

Murders In a recent year, there were 333 murders in New York City. Find the mean number of murders per day, then use that result to find the probability that in a day, there are no murders. Does it appear that there are expected to be many days with no murders?

In Exercises 7–14, determine whether a probability

distribution is given. If a probability distribution is given, find its mean and standard deviation. If a probability distribution is not given, identify the requirements that are not satisfied.

Five males with an X-linked genetic disorder have one child each. The random variable xis the number of children among the five who inherit the X-linked genetic disorder.

x

P(x)

0

0.031

1

0.156

2

0.313

3

0.313

4

0.156

5

0.031

In Exercises 1–5, assume that 74% of randomly selected adults have a credit card (based on results from an AARP Bulletin survey). Assume that a group of five adults is randomly selected.

If all five of the adults have credit cards, is five significantly high? Why or

why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free