Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1–5, assume that 74% of randomly selected adults have a credit card (basedon results from an AARP Bulletin survey). Assume that a group of five adults is randomly selected.

Find the probability that exactly three of the five adults have credit cards.

Short Answer

Expert verified

The probability that exactly three of the five adults have credit cards is 0.274.

Step by step solution

01

Given information

The number of randomly selected adults are n=5.

The probability of randomly selected adults that have a credit card is p=0.74.

02

Compute the probability that exactly three of the five adults have credit cards

Let x represents the number of adults who have credit cards.

In the given scenario, the variable x will follow the binomial distribution.

The probability mass function of the binomial distribution is given as,

Px=Cxnpxqn-x

The probability that exactly three of the five adults have credit cards is computed as,

P3=C350.7431-0.745-3=5!3!5-3!0.7430.262=0.274

Thus, the probability that exactly three of the five adults have credit cards is 0.274.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 15–20, assume that random guesses are made for eight multiple choice questions on an SAT test, so that there are n = 8 trials, each with probability of success (correct) given by p = 0.20. Find the indicated probability for the number of correct answers.

Find the probability of no correct answers.

In Exercises 15–20, refer to the accompanying table, which describes results from groups of 8 births from 8 different sets of parents. The random variable x represents the number of girls among 8 children.

Use the range rule of thumb to determine whether 1 girl in 8 births is a significantly low number of girls.

Number of girls x

P(x)

0

0.004

1

0.031

2

0.109

3

0.219

4

0.273

5

0.219

6

0.109

7

0.031

8

0.004

For 100 births, P(exactly 56 girls) = 0.0390 and P(56 or more girls) = 0.136. Is 56 girls in 100 births a significantly high number of girls? Which probability is relevant to answering that question?

Binomial Probability Formula. In Exercises 13 and 14, answer the questions designed to help understand the rationale for the binomial probability formula.

Guessing Answers Standard tests, such as the SAT, ACT, or Medical College Admission Test (MCAT), typically use multiple choice questions, each with five possible answers (a, b, c, d, e), one of which is correct. Assume that you guess the answers to the first three questions.

a. Use the multiplication rule to find the probability that the first two guesses are wrong and the third is correct. That is, find P(WWC), where W denotes a wrong answerand C denotes a correct answer.

b.Beginning with WWC, make a complete list of the different possible arrangements of two wrong answers and one correct answer, then find the probability for each entry in the list.

c. Based on the preceding results, what is the probability of getting exactly one correct answer when three guesses are made?

Geometric Distribution If a procedure meets all the conditions of a binomial distribution except that the number of trials is not fixed, then the geometric distribution can be used. The probability of getting the first success on the xth trial is given by , where p is the probability of success on any one trial. Subjects are randomly selected for the National Health and Nutrition Examination Survey conducted by the National Center for Health Statistics, Centers for Disease Control and Prevention. The probability that someone is a universal donor (with group O and type Rh negative blood) is 0.06. Find the probability that the first subject to be a universal blood donor is the fifth person selected.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free