Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Quadratic Mean The quadratic mean (or root mean square, or R.M.S.) is used in physical applications, such as power distribution systems. The quadratic mean of a set of values is obtained by squaring each value, adding those squares, dividing the sum by the number of values n, and then taking the square root of that result, as indicated below:

Quadraticmean=x2n

Find the R.M.S. of these voltages measured from household current: 0, 60, 110, -110, -60, 0.

How does the result compare to the mean?

Short Answer

Expert verified

The root mean square value is 72.3, which is different from the mean value of 0.

Step by step solution

01

Given information

The voltages measured for five household currents are 0, 60, 110, –110, –60, 0.

02

Root mean square formula

For n observations, the root mean square is computed in the following steps.

  • Obtain the sum of squares observations.
  • Find the quotient of the sum over the count of observations.
  • Obtain the square root of the quotient.

Mathematically,

R.M.S=x2n for x observations.

Substitute the values to obtain theroot mean square.

R.M.S=02+602+1102+-1102+-602+026=314006=5233.33=72.3418

Thus, the root mean square value is 72.3.

03

Compute the mean value

The formula for mean is stated below.

x¯=xn

Substitute the values.

x¯=0+60+110-110-60+06=0

Thus, the mean value is 0.0.

04

Compare the two measures of mean

The value of root mean square is 72.3, which is different from 0. The observations take a negative set of values, which leads to the sum of 0.

On the other hand, the root mean square uses the squared value of observations which nullifies the effect of negative signs.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13–16, use z scores to compare the given values.

Red Blood Cell Counts Based on Data Set 1 “Body Data” in Appendix B, males have red blood cell counts with a mean of 4.719 and a standard deviation of 0.490, while females have red blood cell counts with a mean of 4.349 and a standard deviation of 0.402. Who has the higher count relative to the sample from which it came: a male with a count of 5.58 or a female with a count of 5.23? Explain.

In Exercises 21–24, find the mean and median for each of the two samples, then compare the two sets of results.

Bank Queues Waiting times (in seconds) of customers at the Madison Savings Bank are recorded with two configurations: single customer line; individual customer lines. Carefully examine the data to determine whether there is a difference between the two data sets that is not apparent from a comparison of the measures of center. If so, what is it?

Single Line 390 396 402 408 426 438 444 462 462 462

Individual Lines 252 324 348 372 402 462 462 510 558 600

In Exercises 21–28, use the same list of Sprint airport data speeds (Mbps) given for Exercises 17–20. Find the indicated percentile or quartile.

P40

In Exercises 5–20, find the range, variance, and standard deviation for the given sample data. Include appropriate units (such as “minutes”) in your results. (The same data were used in Section 3-1, where we found measures of center. Here we find measures of variation.) Then answer the given questions.

California Smokers In the California Health Interview Survey, randomly selected adults are interviewed. One of the questions asks how many cigarettes are smoked per day, and results are listed below for 50 randomly selected respondents. How well do the results reflect the smoking behavior of California adults?

9 10 10 20 40 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In Exercises 29–32, find the mean of the data summarized in the frequency distribution. Also, compare the computed means to the actual means obtained by using the original list of data values, which are as follows: (Exercise 29) 36.2 years; (Exercise 30) 44.1 years; (Exercise 31) 224.3; (Exercise 32) 255.1..

Age (year) of Best Actress when Oscar was won

Frequency

20–29

29

30–39

34

40–49

14

50–59

3

60–69

5

70–79

1

80–89

1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free