Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 21–28, use the same list of Sprint airport data speeds (Mbps) given for Exercises 17–20. Find the indicated percentile or quartile.

Q3

Short Answer

Expert verified

The data speed corresponding to the third quartile is equal to 3.8 Mbps.

Step by step solution

01

Given information 

50 airport data speeds (in Mbps) are provided.

02

Conversion of quartile to value 

The third quartileis the same as the 75th percentile, that is,

Q3=P75

The value of the 75th percentile needs to be computed to compute the value corresponding to the third quartile.

A value in the given percentile is found using the given formula:

  • Find L=k100×n.

Here, L is the locator of the value;

k is the percentile of the value;

n is the total number of values.

  • When L becomes a whole number, the Lthvalue and the next value are added and divided by 2. The resultant is the required data value.
  • When L becomes a decimal number, the value of L is rounded to the next whole number, and the resulting Lth value is the required data value.
03

Calculation

List all the values in increasing order and follow the steps.

  • Count the total number of values.
  • For k=75, compute the value of L.

Therefore,

L=k100×n=75100×50=37.538roundedtothenextwholenumber

The value corresponding to the 38th observation from the sorted data is 3.8 Mbps.

Therefore,the data speed corresponding to the third quartile is 3.8 Mbps.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, find the range, variance, and standard deviation for the given sample data. Include appropriate units (such as “minutes”) in your results. (The same data were used in Section 3-1, where we found measures of center. Here we find measures of variation.) Then answer the given questions.

Football Player Weights Listed below are the weights in pounds of 11 players randomly selected from the roster of the Seattle Seahawks when they won Super Bowl XLVIII (the same players from the preceding exercise). Are the measures of variation likely to be typical of all NFL players?

189 254 235 225 190 305 195 202 190 252 305

z Scores LeBron James, one of the most successful basketball players of all time, has a height of 6 feet 8 inches, or 203 cm. Based on statistics from Data Set 1 “Body Data” in Appendix B, his height converts to the z score of 4.07. How many standard deviations is his height above the mean?

USA Today published a list consisting of the state tax on each gallon of gas. If we add the 50 state tax amounts and then divide by 50, we get 27.3 cents. Is the value of 27.3 cents the mean amount of state sales tax paid by all U.S. drivers? Why or why not?

In Exercises 37–40, refer to the frequency distribution in the given exercise and find the standard deviation by using the formula below, where x represents the class midpoint, f represents the class frequency, and n represents the total number of sample values. Also, compare the computed standard deviations to these standard deviations obtained by using Formula 3-4 with the original list of data values: (Exercise 37) 11.5 years; (Exercise 38) 8.9 years; (Exercise 39) 59.5; (Exercise 40) 65.4.

Standard deviation for frequency distribution

s=nf×x2-f×x2nn-1

Blood Platelet Count of Males

Frequency

0-99

1

100-199

51

200-299

90

300-399

10

400-499

0

500-599

0

600-699

1

In Exercises 5–8, express all z scores with two decimal places.

ATL Data Speeds For the Verizon airport data speeds (Mbps) listed in Data Set 32 “Airport Data Speeds” in Appendix B, the highest speed of 77.8 Mbps was measured at Atlanta’s (ATL) international airport. The complete list of 50 Verizon data speeds has a mean of x = 17.60 Mbps and a standard deviation of s = 16.02 Mbps

a. What is the difference between Verizon’s data speed at Atlanta’s international airport and the mean of all of Verizon’s data speeds?

b. How many standard deviations is that [the difference found in part (a)]?

c. Convert Verizon’s data speed at Atlanta’s international airport to a z score.

d. If we consider data speeds that convert to z scores between -2 and 2 to be neither significantly low nor significantly high, is Verizon’s speed at Atlanta significant?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free