Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

:In Exercises 5–20, find the range, variance, and standard deviation for the given sample data. Include appropriate units (such as “minutes”) in your results. (The same data were used in Section 3-1, where we found measures of center. Here we find measures of variation.) Then answer the given questions.

Speed Dating In a study of speed dating conducted at Columbia University, female subjects were asked to rate the attractiveness of their male dates, and a sample of the results is listed below (1 = not attractive; 10 = extremely attractive). Can the results be used to describe the variation among attractiveness ratings for the population of adult males?

5 8 3 8 6 10 3 7 9 8 5 5 6 8 8 7 3 5 5 6 8 7 8 8 8 7

Short Answer

Expert verified

The sample range is 7.

The sample variance is 3.5.

The sample standard deviation is 1.9.

The measures of variation have no meaning for data that is measured on an ordinal scale. Therefore, the results cannot describe the variation present in the attractiveness ratings for all adult males.

Step by step solution

01

Given information

The attractiveness ratings of the male counterparts given by a group of 26 females are provided.

02

Computation of range 

Therangeis one of the quantities used to measure the dispersion of data. Its units are equal to the units of the sample observations. It is calculated as shown below:

.Range=MaximumValue-MinimumValue=10-3=7.0

Therefore, the range of the sample is 7.0.

03

Computation of variance 

The sample mean needs to be computed to calculate the sample variance and the sample standard deviation.

The sample mean is computed as follows:

x¯=i=1nxin=5+8+....+726=6.6

Thus, the sample mean is equal to 16.6.

Thevarianceis another quantity that is used to measure the dispersion of data. Its units are the square of the units of the sample observations. It is calculated as shown below:

s2=i=1nxi-x¯2n-1=5-6.62+8-6.62+...+7-6.6226-1=3.5

Therefore, the variance of the sample is 3.5.

04

Computation of standard deviation 

Thestandard deviationis computed by calculating the square root of the variance term. Its units are the same as the units of the sample observations.

s=s2=3.5=1.9

Therefore, the standard deviation of the sample is 1.9.

05

Evaluate the meaningfulness of results for the population

The data is measured on anordinal scale, with ratings of attractiveness from 1 to 10. The mean value is not defined for ordinal data. Thus, the dispersion from the mean hasno meaning for the given data.

The values do not depict the amount of variation in attractiveness ratings for the population of all adult males.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Chebyshev’sTheorem Based on Data Set 3 “Body Temperatures” in Appendix B, body temperatures of healthy adults have a bell-shaped distribution with a mean of 98.20°F and a standard deviation of 0.62°F (using the data from 12 AM on day 2). Using Chebyshev’s theorem, what do we know about the percentage of healthy adults with body temperatures that are within 2 standard deviations of the mean? What are the minimum and maximum body temperatures that are within 2 standard deviations of the mean??

In Exercises 5–20, find the range, variance, and standard deviation for the given sample data. Include appropriate units (such as “minutes”) in your results. (The same data were used in Section 3-1, where we found measures of center. Here we find measures of variation.) Then answer the given questions.

California Smokers In the California Health Interview Survey, randomly selected adults are interviewed. One of the questions asks how many cigarettes are smoked per day, and results are listed below for 50 randomly selected respondents. How well do the results reflect the smoking behavior of California adults?

9 10 10 20 40 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Critical Thinking. For Exercises 5–20, watch out for these little buggers. Each of these exercises involves some feature that is somewhat tricky. Find the (a) mean, (b) median, (c) mode, (d) midrange, and then answer the given question.

TV Prices Listed below are selling prices (dollars) of TVs that are 60 inches or larger and rated as a “best buy” by Consumer Reports magazine.

Are the resulting statistics representative of the population of all TVs that are 60 inches and larger?

If you decide to buy one of these TVs, what statistic is most relevant, other than the measures of central tendency?

1800 1500 1200 1500 1400 1600 1500 950 1600 1150 1500 1750

In Exercises 5–20, find the range, variance, and standard deviation for the given sample data. Include appropriate units (such as “minutes”) in your results. (The same data were used in Section 3-1, where we found measures of center. Herewe find measures of variation.) Then answer the given questions.

Cell Phone Radiation Listed below are the measured radiation absorption rates (in W/kg) corresponding to these cell phones: iPhone 5S, BlackBerry Z30, Sanyo Vero, Optimus V, Droid Razr, Nokia N97, Samsung Vibrant, Sony Z750a, Kyocera Kona, LG G2, and Virgin Mobile Supreme. The data are from the Federal Communications Commission. If one of each model of cell phone is measured for radiation and the results are used to find the measures of variation, are the results typical of the population of cell phones that are in use?

1.18 1.41 1.49 1.04 1.45 0.74 0.89 1.42 1.45 0.51 1.38

In Exercises 21–24, find the coefficient of variation for each of the two samples; then compare the variation. (The same data were used in Section 3-1.) 21.

Bank Queues Waiting times (in seconds) of customers at the Madison Savings Bank are recorded with two configurations: single customer line; individual customer lines.

Single Line 390 396 402 408 426 438 444 462 462 462

Individual Lines 252 324 348 372 402 462 462 510 558 600

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free