Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

:In Exercises 5–20, find the range, variance, and standard deviation for the given sample data. Include appropriate units (such as “minutes”) in your results. (The same data were used in Section 3-1, where we found measures of center. Here we find measures of variation.) Then answer the given questions.

Most Expensive Colleges Listed below in dollars are the annual costs of tuition and fees at the 10 most expensive colleges in the United States for a recent year (based on data from U.S. News & World Report). The colleges listed in order are Columbia, Vassar, Trinity, George Washington, Carnegie Mellon, Wesleyan, Tulane, Bucknell, Oberlin, and Union. What does this “top 10” list tell us about the variation among costs for the population of all U.S. college tuitions?

49,138 47,890 47,510 47,343 46,962 46,944 46,930 46,902 46,870 46,785

Short Answer

Expert verified

The values of the calculated statistics are as follows:

The range is equal to 2353.0 dollars.

Variance is equal to 527910.5 dollars square.

Thestandarddeviation is equal to 726.6 dollars.

The sample values consist of the costs of only the top 10 colleges in the US. Thus, the variation among these costs does not tell anything about the entire population of all US colleges.

Step by step solution

01

Given information

The given data shows the annual costs of tuition and fees of the top 10 colleges of the United States.

02

Formulae for measures of variation 

Therange measures the overall variation in a dataset. It is computed as follows:

Range=MaximumValue-MinimumValue=49138-46785=2353.0dollars

Hence, the value of the range is 2353.0 dollars.

Thevariance measures the square of the deviation between the values from the mean value. It is computed as follows:

s2=i=1nxi-x¯2n-1

Thestandard deviation measures the deviation between the values from the mean value. It is computed as follows:

s=s2

03

Compute sample standard deviation and variance 

The sample mean is computed as follows:

x¯=i=1nxin=49+138+....+78510=47327.4dollars

Thus, the sample mean is equal to 47327.4 dollars.

The variance is calculated as follows, substituting the values:

s2=i=1nxi-x¯2n-1=49-47327.42+138-47327.42+...+785-47327.4210-1=527910.5dollars

Hence, the value of variance is 527910.5 dollars square.

The standard deviation is calculated as follows:

s=s2=527910.5=726.6dollars

Hence, the value of standard deviation is 726.6 dollars.

04

Evaluate the quality of sampled values

The sample fees are taken from the top 10 colleges in the US. They are randomly selected samples taken from the population of all fees concerning all US colleges.

Thus, the values of the variation from the sample are not appropriate representative of the costs of the entire population of US colleges.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Symbols Identify the symbols used for each of the following: (a) sample standard deviation;(b) population standard deviation;(c) sample variance;(d) population variance.

In Exercises 21–24, find the mean and median for each of the two samples, then compare the two sets of results.

Blood Pressure A sample of blood pressure measurements is taken from Data Set 1 “Body Data” in Appendix B, and those values (mm Hg) are listed below. The values are matched so that 10 subjects each have systolic and diastolic measurements. (Systolic is a measure of the

force of blood being pushed through arteries, but diastolic is a measure of blood pressure when the heart is at rest between beats.) Are the measures of center the best statistics to use with these data? What else might be better?

Systolic: 118 128 158 96 156 122 116 136 126 120

Diastolic: 80 76 74 52 90 88 58 64 72 82

In Exercises 33–36, use the range rule of thumb to identify the limits separating values that are significantly low or significantly high

Pulse Rates of Males Based on Data Set 1 “Body Data” in Appendix B, males have pulse rates with a mean of 69.6 beats per minute and a standard deviation of 11.3 beats per minute. Is a pulse rate of 50 beats per minute significantly low or significantly high? (All of these pulse rates are measured at rest.) Explain.

The Empirical Rule Based on Data Set 1 “Body Data” in Appendix B, blood platelet counts of women have a bell-shaped distribution with a mean of 255.1 and a standard deviation of 65.4. (All units are 1000 cells/L.) Using the empirical rule, what is the approximate percentage of women with platelet counts

a. within 2 standard deviations of the mean, or between 124.3 and 385.9?

b. between 189.7 and 320.5?

Harmonic Mean The harmonic mean is often used as a measure of center for data sets consisting of rates of change, such as speeds. It is found by dividing the number of values n by the sum of the reciprocals of all values, expressed as

n1x

(No value can be zero.) The author drove 1163 miles to a conference in Orlando, Florida. For the trip to the conference, the author stopped overnight, and the mean speed from start to finish was 38 mi/h. For the return trip, the author stopped only for food and fuel, and the mean speed from start to finish was 56 mi/h. Find the harmonic mean of 38 mi/h and 56 mi/h to find the true “average” speed for the round trip.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free