Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13–16, use z scores to compare the given values.

Tallest and Shortest Men The tallest living man at the time of this writing is Sultan Kosen, who has a height of 251 cm. The shortest living man is Chandra Bahadur Dangi, who has a height of 54.6 cm. Heights of men have a mean of 174.12 cm and a standard deviation of 7.10 cm. Which of these two men has the height that is more extreme?

Short Answer

Expert verified

The height of the shortest man, equal to 54.6 cm, is more extreme than the height of the tallest man, equal to 251 cm.

Step by step solution

01

Given information

The mean height of men is given as 174.12 cm, and the standard deviation of the heights of men is equal to 7.10 cm.

02

Formula of z-score

Thez-score is the value that explains the location of a given data value from the mean value in terms of the standard deviation. Mathematically,

Z=x-x¯s

Values with a greater z-score (in absolute terms) are said to be less extreme compared to values with a smaller z-score.

03

Calculation

The z-score for the tallest man with a height equal to 251 cm is computed as follows:

z=x-x¯s=251-174.127.10=10.83

Therefore, thez-score for the tallest man with a height equal to 251 cm is equal to 10.83.

The z-score for the shortest man with a height equal to 54.6 cm is computed as follows:

z=x-x¯s=54.6-174.127.10=-16.83

Therefore, thez-score for the tallest man with a height equal to 54.6 cm is equal to -16.83.

04

Comparison

The height of the tallest man is 10.83 standard deviations above the mean, and the height of the shortest man is 16.83 standard deviations below the mean.

As 54.6 cm is farther from the mean value compared to 251 cm, theshortest man’s height, equal to 54.6 cm, ismore extreme than the tallest man’s height.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–8, express all z scores with two decimal places.

PHL Data Speeds Repeat the preceding exercise using the Verizon data speed of 0.8 Mbps at Philadelphia International Airport (PHL).

In Exercises 17–20, use the following cell phone airport data speeds (Mbps) from Sprint. Find the percentile corresponding to the given data speed.

0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.8 1.0 1.1 1.1 1.2 1.2 1.6 1.6 2.1 2.1 2.3 2.4 2.5 2.7 2.7 2.7 3.2 3.4 3.6 3.8 4.0 4.0 5.0 5.6 8.2 9.6 10.6 13.0 14.1 15.1 15.2 30.4

0.7 Mbps

In Exercises 5–20, find the range, variance, and standard deviation for the given sample data. Include appropriate units (such as “minutes”) in your results. (The same data were used in Section 3-1, where we found measures of center. Herewe find measures of variation.) Then answer the given questions.

What Happens in Vegas . . . Listed below are prices in dollars for one night at different hotels located on Las Vegas Boulevard (the “Strip”). How useful are the measures of variation for someone searching for a room?

212 77 121 104 153 264 195 244

The Empirical Rule Based on Data Set 1 “Body Data” in Appendix B, blood platelet counts of women have a bell-shaped distribution with a mean of 255.1 and a standard deviation of 65.4. (All units are 1000 cells/L.) Using the empirical rule, what is the approximate percentage of women with platelet counts

a. within 2 standard deviations of the mean, or between 124.3 and 385.9?

b. between 189.7 and 320.5?

Critical Thinking. For Exercises 5–20, watch out for these little buggers. Each of these exercises involves some feature that is somewhat tricky. Find the (a) mean, (b) median, (c) mode, (d) midrange, and then answer the given question

Speed Dating In a study of speed dating conducted at Columbia University, female subjects were asked to rate the attractiveness of their male dates, and a sample of the results is listed below (1 = not attractive; 10 = extremely attractive). Can the results be used to describe the attractiveness of the population of adult males?

5 8 3 8 6 10 3 7 9 8 5 5 6 8 8 7 3 5 5 6 8 7 8 8 8 7

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free