Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Enrollment (thousands)

53

28

27

36

42

Burglaries

86

57

32

131

157

True or false: If the sample data lead us to the conclusion that there is sufficient evidence to support the claim of a linear correlation between enrollment and number of burglaries, then we could also conclude that higher enrollments cause increases in numbers of burglaries.

Short Answer

Expert verified

The statement is false.

Step by step solution

01

Given information

The table represents two variables—the number of enrolled students (in thousands) and the burglaries for certain large colleges.

02

Interpret the correlation

Linear correlation is a measure that describes the significance of linear association between a pair of variables.

The conclusion is that there is sufficient evidence to support the claim of a linear correlation between enrollment and the number of burglaries. It implies there is a significant linear relationship between the populations of the two variables.

It is also known thatcorrelation does not imply causation, which implies that the linear association does not guarantee that one variable causes change in the other.

Thus, the given statement provided is false as a significant association does not imply that higher enrollments cause an increase in the number of burglaries.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9 and 10, use the given data to find the equation of the regression line. Examine the scatterplot and identify a characteristic of the data that is ignored by the regression line.

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, StatCrunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.

Finding a Prediction Interval For a year with 850,000 (x = 852) registered boats in Florida, identify the 95% prediction interval estimate of the number of manatee fatalities resulting from encounters with boats. Write a statement interpreting that interval.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Revised mpg Ratings Listed below are combined city-highway fuel economy ratings (in mi>gal) for different cars. The old ratings are based on tests used before 2008 and the new ratings are based on tests that went into effect in 2008. Is there sufficient evidence to conclude that there is a linear correlation between the old ratings and the new ratings? What do the data suggest about the old ratings?

Old

16

27

17

33

28

24

18

22

20

29

21

New

15

24

15

29

25

22

16

20

18

26

19

In Exercises 5–8, we want to consider the correlation between heights of fathers and mothers and the heights of their sons. Refer to the

StatCrunch display and answer the given questions or identify the indicated items.

The display is based on Data Set 5 “Family Heights” in Appendix B.

A son will be born to a father who is 70 in. tall and a mother who is 60 in. tall. Use the multiple regression equation to predict the height of the son. Is the result likely to be a good predicted value? Why or why not?

Global Warming If we find that there is a linear correlation between the concentration of carbon dioxide (\(C{O_2}\)) in our atmosphere and the global mean temperature, does that indicate that changes in (\(C{O_2}\))cause changes in the global mean temperature? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free