Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Enrollment (thousands)

53

28

27

36

42

Burglaries

86

57

32

131

157

True or false: If the sample data lead us to the conclusion that there is sufficient evidence to support the claim of a linear correlation between enrollment and number of burglaries, then we could also conclude that higher enrollments cause increases in numbers of burglaries.

Short Answer

Expert verified

The statement is false.

Step by step solution

01

Given information

The table represents two variables—the number of enrolled students (in thousands) and the burglaries for certain large colleges.

02

Interpret the correlation

Linear correlation is a measure that describes the significance of linear association between a pair of variables.

The conclusion is that there is sufficient evidence to support the claim of a linear correlation between enrollment and the number of burglaries. It implies there is a significant linear relationship between the populations of the two variables.

It is also known thatcorrelation does not imply causation, which implies that the linear association does not guarantee that one variable causes change in the other.

Thus, the given statement provided is false as a significant association does not imply that higher enrollments cause an increase in the number of burglaries.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the shoe print lengths and heights to find the best predicted height of a male who has a shoe print length of 31.3 cm. Would the result be helpful to police crime scene investigators in trying to describe the male?

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Confidence Interval Construct a 95% confidence interval estimate of the mean sunspot number. Write a brief statement interpreting the confidence interval.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Tips Listed below are amounts of bills for dinner and the amounts of the tips that were left. The data were collected by students of the author. Is there sufficient evidence to conclude that there is a linear correlation between the bill amounts and the tip amounts? If everyone were to tip with the same percentage, what should be the value of r?

Bill(dollars)

33.46

50.68

87.92

98.84

63.6

107.34

Tip(dollars)

5.5

5

8.08

17

12

16

In Exercises 5–8, use a significance level of A = 0.05 and refer to the

accompanying displays.

Casino Size and Revenue The New York Times published the sizes (square feet) and revenues (dollars) of seven different casinos in Atlantic City. Is there sufficient evidence to support the claim that there is a linear correlation between size and revenue? Do the results suggest that a casino can increase its revenue by expanding its size?

Cigarette Tar and Nicotine The table below lists measured amounts (mg) of tar, carbonmonoxide (CO), and nicotine in king size cigarettes of different brands (from Data Set 13“Cigarette Contents” in Appendix B).

a. Is there is sufficient evidence to support a claim of a linear correlation between tar and nicotine?

b. What percentage of the variation in nicotine can be explained by the linear correlation between nicotine and tar?

c. Letting yrepresent the amount of nicotine and letting xrepresent the amount of tar, identify the regression equation.

d. The Raleigh brand king size cigarette is not included in the table, and it has 23 mg of tar. What is the best predicted amount of nicotine? How does the predicted amount compare to the actual amount of 1.3 mg of nicotine?

Tar

25

27

20

24

20

20

21

24

CO

18

16

16

16

16

16

14

17

Nicotine

1.5

1.7

1.1

1.6

1.1

1.0

1.2

1.4

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free