Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, StatCrunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.

Testing for Correlation Use the information provided in the display to determine the value of the linear correlation coefficient. Is there sufficient evidence to support a claim of a linear correlation between numbers of registered boats and numbers of manatee deaths from encounters with boats?

Short Answer

Expert verified

The linear correlation coefficient is 0.85014394.

There is sufficient evidence to support the claim that the variables “number of registered boats” and “number of manatee deaths from encounters with boats” are linearly related.

Step by step solution

01

Given information

Results are obtained for the linear relation between the variables “number of registered boats” and “number of manatee deaths” using StatCrunch.

02

Correlation coefficient

The linear correlation between the two variables is shown in the results obtained using StatCrunch and is equal to 0.85014394.

03

Significance of correlation

The researcher wants to test the claim that there is a linear correlation between the variables number of registered boats and the number of manatee deaths from encounters with boats.

Let\(\rho \)represent the linear correlation coefficient of the population.

The statistical hypothesis is given below:

\(\begin{array}{l}{H_0}:\rho = 0\\{H_1}:\rho \ne 0\end{array}\)

Here,

\(\begin{array}{l}r = 0.850\\n = 24\end{array}\)

The degrees of freedom (df) is given as follows:

\(\begin{array}{c}df = n - 2\\ = 24 - 2\\ = 22\end{array}\)

The two-tailed critical values of rat df = 22 and at a significance level of 0.05 are obtained as –404 and 0.404.

Since the given value of the linear correlation coefficient (0.850) lies beyond the upper critical value of 0.404, the null hypothesis is rejected.

Thus, there issufficient evidence to support the claim of a linear correlation between the numbers of registered boats and number of manatee deaths from encounters with boats.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9 and 10, use the given data to find the equation of the regression line. Examine the scatterplot and identify a characteristic of the data that is ignored by the regression line.

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the CPI/subway fare data from the preceding exercise and find

the best predicted subway fare for a time when the CPI reaches 500. What is wrong with this prediction?

Terminology Using the lengths (in.), chest sizes (in.), and weights (lb) of bears from Data Set 9 “Bear Measurements” in Appendix B, we get this regression equation: Weight = -274 + 0.426 Length +12.1 Chest Size. Identify the response and predictor variables

Effects of an Outlier Refer to the Minitab-generated scatterplot given in Exercise 11 of

Section 10-1 on page 485.

a. Using the pairs of values for all 10 points, find the equation of the regression line.

b. After removing the point with coordinates (10, 10), use the pairs of values for the remaining 9 points and find the equation of the regression line.

c. Compare the results from parts (a) and (b).

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the foot lengths and heights to find the best predicted height of a male

who has a foot length of 28 cm. Would the result be helpful to police crime scene investigators in trying to describe the male?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free