Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi/gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi/gal).

If only one predictor (x) variable is used to predict the city fuel consumption, which single variable is best? Why?

Short Answer

Expert verified

HWY is the best predictor in the single variable study for predicting fuel consumption of the city.

Step by step solution

01

Given information

The table represents the predictor variables, P-value, \({R^2}\), Adjusted-\({R^2}\) and the regression equations.

02

State the criteria for best predictor variables

The p-value determines the significance of the variable in regression analysis. The R-squared measure is the coefficient of determination measure, which measures the sum of squares explained by the regression line.The R-squared adjusted measures the accuracy while considering the count of independent variables in the model. A good-fit model gives a better prediction.

The optimum level of each measure defines the best predictor in the regression model.

03

Identify the best predictor model

From the provided three models with one predictor variable, the model with predictor HWY (highway fuel consumption) has the:

  • smallest P-value is 0.000
  • highest measures of both\({R^2}\)and adjusted\({R^2}\)value which is 0.924 and 0.920 respectively.

This implies that HWY is the best predictor of the city’s fuel consumption variable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, StatCrunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.

Finding a Prediction Interval For a year with 850,000 (x = 852) registered boats in Florida, identify the 95% prediction interval estimate of the number of manatee fatalities resulting from encounters with boats. Write a statement interpreting that interval.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Internet and Nobel Laureates Listed below are numbers of Internet users per 100 people and numbers of Nobel Laureates per 10 million people (from Data Set 16 “Nobel Laureates and Chocolate” in Appendix B) for different countries. Is there sufficient evidence to conclude that there is a linear correlation between Internet users and Nobel Laureates?

Internet Users

Nobel Laureates

79.5

5.5

79.6

9

56.8

3.3

67.6

1.7

77.9

10.8

38.3

0.1

In Exercises 5–8, use a significance level of A = 0.05 and refer to theaccompanying displays.Garbage Data Set 31 “Garbage Weight” in Appendix B includes weights of garbage discarded in one week from 62 different households. The paired weights of paper and glass were used to obtain the XLSTAT results shown here. Is there sufficient evidence to support the claim that there is a linear correlation between weights of discarded paper and glass?

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed old/new mpg ratings, find the best predicted new

mpg rating for a car with an old rating of 30 mpg. Is there anything to suggest that the prediction is likely to be quite good?

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

Heights (cm) and weights (kg) are measured for 100 randomly selected

adult males (from Data Set 1 “Body Data” in Appendix B). The 100 paired measurements yield\(\bar x = 173.79\)cm,\(\bar y = 85.93\)kg, r= 0.418, P-value = 0.000, and\(\hat y = - 106 + 1.10x\). Find the best predicted value of\(\hat y\)(weight) given an adult male who is 180 cm tall.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free