Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Enrollment (thousands)

53

28

27

36

42

Burglaries

86

57

32

131

157

True or false: If there is no linear correlation between enrollment and number of burglaries, then those two variables are not related in any way.

Short Answer

Expert verified

The statement is false.

Step by step solution

01

Given information

A table represents the number of enrolled students (in thousands) and the burglaries for randomly selected large colleges

02

Describe the correlation

Linear correlation is a measure that finds the magnitude of linear association between two variables. The measure for Pearson’s correlation is between –1 and 1 where 1 and -1 respectively indicates perfect positive and negative linear relationships.

The two variables can be associated by any pattern—linear or non-linear.

Thus, the given statement is false as the variables can be non-linearly related if there is no linear correlation between enrollment and number of burglaries.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed lemon/crash data, find the best predicted crash fatality rate for a year in which there are 500 metric tons of lemon imports. Is the prediction worthwhile?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Revised mpg Ratings Listed below are combined city-highway fuel economy ratings (in mi>gal) for different cars. The old ratings are based on tests used before 2008 and the new ratings are based on tests that went into effect in 2008. Is there sufficient evidence to conclude that there is a linear correlation between the old ratings and the new ratings? What do the data suggest about the old ratings?

Old

16

27

17

33

28

24

18

22

20

29

21

New

15

24

15

29

25

22

16

20

18

26

19

Explore! Exercises 9 and 10 provide two data sets from “Graphs in Statistical Analysis,” by F. J. Anscombe, the American Statistician, Vol. 27. For each exercise,

a. Construct a scatterplot.

b. Find the value of the linear correlation coefficient r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables.

c. Identify the feature of the data that would be missed if part (b) was completed without constructing the scatterplot.

x

10

8

13

9

11

14

6

4

12

7

5

y

9.14

8.14

8.74

8.77

9.26

8.10

6.13

3.10

9.13

7.26

4.74

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

Heights (cm) and weights (kg) are measured for 100 randomly selected

adult males (from Data Set 1 “Body Data” in Appendix B). The 100 paired measurements yield\(\bar x = 173.79\)cm,\(\bar y = 85.93\)kg, r= 0.418, P-value = 0.000, and\(\hat y = - 106 + 1.10x\). Find the best predicted value of\(\hat y\)(weight) given an adult male who is 180 cm tall.

Adjusted Coefficient of Determination For Exercise 2, why is it better to use values of adjusted \({R^2}\)instead of simply using values of \({R^2}\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free