Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Bears r = 0.783 (x = head width of a bear, y = weight of a bear)

Short Answer

Expert verified

The coefficient of determination is 0.613.

Here, 61.3% of the variation is explained by the linear association between the head width and the weight of a bear.

And 38.7% variation in the weight of a bear is explained by other factors and random variation.

Step by step solution

01

Given information

The linear correlation coefficient between the head width and the weight of a bear is 0.783.

02

Coefficient of determination

The square of the linear correlation coefficient between the two variables equals the coefficient of determination.

Here, the linear correlation coefficient (r) between the head width and the weight of a bear equals0.783.

Thus,

\(\begin{array}{c}{\rm{Coefficient}}\;{\rm{of}}\;{\rm{determination}} = {r^2}\\ = {0.783^2}\\ = 0.613\end{array}\)

Therefore, the value of the coefficient of determination is 0.613.

03

Percentage of variation

Here,

\(\begin{array}{c}{r^2} = 0.613\\ = \frac{{61.3}}{{100}} \times 100\% \\ = 61.3\% \end{array}\)

Therefore, the percentage of the variation explained by the linear association between the head width and the weight of a bear is 61.3%.

The rest \(100\% - 61.3\% = 38.7\% \) variation is explained by other factors and random variation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–8, use a significance level of A = 0.05 and refer to the

accompanying displays.

Casino Size and Revenue The New York Times published the sizes (square feet) and revenues (dollars) of seven different casinos in Atlantic City. Is there sufficient evidence to support the claim that there is a linear correlation between size and revenue? Do the results suggest that a casino can increase its revenue by expanding its size?

Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Pizza and Subways r = 0.992 (x = cost of a slice of pizza, y = subway fare in New York City

Prediction Interval Using the heights and weights described in Exercise 1, a height of 180 cm is used to find that the predicted weight is 91.3 kg, and the 95% prediction interval is (59.0 kg, 123.6 kg). Write a statement that interprets that prediction interval. What is the major advantage of using a prediction interval instead of simply using the predicted weight of 91.3 kg? Why is the terminology of prediction interval used instead of confidence interval?

Best Multiple Regression Equation For the regression equation given in Exercise 1, the P-value is 0.000 and the adjusted \({R^2}\)value is 0.925. If we were to include an additional predictor variable of neck size (in.), the P-value becomes 0.000 and the adjusted\({R^2}\)becomes 0.933. Given that the adjusted \({R^2}\)value of 0.933 is larger than 0.925, is it better to use the regression equation with the three predictor variables of length, chest size, and neck size? Explain.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Tips Listed below are amounts of bills for dinner and the amounts of the tips that were left. The data were collected by students of the author. Is there sufficient evidence to conclude that there is a linear correlation between the bill amounts and the tip amounts? If everyone were to tip with the same percentage, what should be the value of r?

Bill(dollars)

33.46

50.68

87.92

98.84

63.6

107.34

Tip(dollars)

5.5

5

8.08

17

12

16

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free