Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5–8, we want to consider the correlation between heights of fathers and mothers and the heights of their sons. Refer to the

StatCrunch display and answer the given questions or identify the indicated items.

The display is based on Data Set 5 “Family Heights” in Appendix B.

A son will be born to a father who is 70 in. tall and a mother who is 60 in. tall. Use the multiple regression equation to predict the height of the son. Is the result likely to be a good predicted value? Why or why not?

Short Answer

Expert verified

Thepredictedheight of the sonborn to a father who is 70 in. tall and a mother who is 60 in. tallis 69.8 in.

The predicted value is not ideal as the model is not a good fit due to relatively lower values of R-squared measures.

Step by step solution

01

Given information

The analysis of variance table for multiple regression model is provided.

02

State the general equation of multiple regression

The multiple regression equation is

\(\hat y = {b_0} + {b_1}{x_1} + {b_2}{x_2} + ... + {b_n}{x_n}\).

03

Obtain the equation of multiple regression

The multiple regression equation for the provided scenario is represented:

\(\begin{array}{c}Son = {b_0} + {b_1}\;Father + {b_2}\;Mother\\ = 17.9666 + 0.504\;Father + 0.277\;Mother\end{array}\)

Here, each coefficient is obtained from the output table.

Therefore,the multiple regression equation for predicting the height of the son is

\(Son = 18 + 0.504\;Father + 0.277\;Mother\).

04

Predict the height of the son

The predictedheight of the sonborn to a father who is 70 in. tall and a mother who is 60 in. tallis

\(\begin{array}{c}Son = 18 + 0.504\;Father + 0.277\;Mother\\ = 18 + \left( {0.504 \times 70} \right) + \left( {0.277 \times 60} \right)\\ = 69.84.\end{array}\)

05

State if the result is likely to be a good predicted value

Based on the output, the P-valuein the last column ofthevariance table for the multiple regression model is low. It is less than 0.0001, indicating a significant model.

But the coefficient of determination and the adjusted coefficient of determination at 0.3249 and 0.3552, respectively, are not high.

Therefore,the multiple regression equation fits the sample data, but it is not a good fit.

Thus, the value is not a good predicted value.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Internet and Nobel Laureates Find the best predicted Nobel Laureate rate for Japan, which has 79.1 Internet users per 100 people. How does it compare to Japan’s Nobel Laureate rate of 1.5 per 10 million people?

In Exercises 5–8, use a significance level of A = 0.05 and refer to the

accompanying displays.

Casino Size and Revenue The New York Times published the sizes (square feet) and revenues (dollars) of seven different casinos in Atlantic City. Is there sufficient evidence to support the claim that there is a linear correlation between size and revenue? Do the results suggest that a casino can increase its revenue by expanding its size?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Manatees Listed below are numbers of registered pleasure boats in Florida (tens of thousands) and the numbers of manatee fatalities from encounters with boats in Florida for each of several recent years. The values are from Data Set 10 “Manatee Deaths” in Appendix B. Is there sufficient evidence to conclude that there is a linear correlation between numbers of registered pleasure boats and numbers of manatee boat fatalities?

Pleasure Boats

99

99

97

95

90

90

87

90

90

Manatee Fatalities

92

73

90

97

83

88

81

73

68

In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi/gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi/gal).

If only one predictor (x) variable is used to predict the city fuel consumption, which single variable is best? Why?

Critical Thinking: Is the pain medicine Duragesic effective in reducing pain? Listed below are measures of pain intensity before and after using the drug Duragesic (fentanyl) (based on data from Janssen Pharmaceutical Products, L.P.). The data are listed in order by row, and corresponding measures are from the same subject before and after treatment. For example, the first subject had a measure of 1.2 before treatment and a measure of 0.4 after treatment. Each pair of measurements is from one subject, and the intensity of pain was measured using the standard visual analog score. A higher score corresponds to higher pain intensity.

Pain Intensity Before Duragesic Treatment

1.2

1.3

1.5

1.6

8

3.4

3.5

2.8

2.6

2.2

3

7.1

2.3

2.1

3.4

6.4

5

4.2

2.8

3.9

5.2

6.9

6.9

5

5.5

6

5.5

8.6

9.4

10

7.6










Pain Intensity After Duragesic Treatment

0.4

1.4

1.8

2.9

6

1.4

0.7

3.9

0.9

1.8

0.9

9.3

8

6.8

2.3

0.4

0.7

1.2

4.5

2

1.6

2

2

6.8

6.6

4.1

4.6

2.9

5.4

4.8

4.1










Correlation Use the given data to construct a scatterplot, then use the methods of Section 10-1 to test for a linear correlation between the pain intensity before and after treatment. If there does appear to be a linear correlation, can we conclude that the drug treatment is effective?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free