Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Repeat the preceding exercise, assuming that the linear correlation coefficient is r= 0.997.

Short Answer

Expert verified

Thebest predicted number of burglaries, with an enrollment of 50 (thousand), is 123.3.

The predictednumber of burglaries is obtained using the regression equation by substituting the measure of x as 50.

Step by step solution

01

Given information

A table represents the number of enrolled students (in thousands) and the number of burglaries for randomly selected large colleges in recent years.

The linear correlation coefficient is\(r = 0.997\).

From Exercise 5, the regression equation is\(\hat y = 3.83 + 2.39x\).

02

Discuss the type of model

A regression model is good if it follows the criteria stated below:

  • The scatterplot shows linear pattern.
  • The correlation coefficient measure is significant.
  • Extrapolation is not done for predicting the values.

A good model predicts the measure using the regression equation, while the predicted value of a bad model is the mean of the sampled response variables.

03

Check the type of model

The scatterplot for the samples is described below:

  • Mark enrolment on the x-axis and burglaries on the y-axis.
  • Scale the axes as per the observations.
  • Mark the paired observations on the plot.

The resultant graph is as follows.

The correlation measure is significant and the value 50 is close to the sampled enrollment data. Thus,the model is good.

04

Determine the predicted value

Using the regression equation, thebest predicted number of burglaries with an enrollment of 50 (thousand) is

\(\begin{array}{c}\hat y = 3.83 + \left( {2.39 \times 50} \right)\\ = 123.3.\end{array}\)

Therefore,thebest predicted number of burglaries with an enrollment of 50 (thousand) is 123.3.

The predicted number of burglaries for the enrollment of 50 (thousand) is obtained by substituting 50 for x in the provided regression equation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ages of MoviegoersThe table below shows the distribution of the ages of moviegoers(based on data from the Motion Picture Association of America). Use the data to estimate themean, standard deviation, and variance of ages of moviegoers.Hint:For the open-ended categoryof โ€œ60 and older,โ€ assume that the category is actually 60โ€“80.

Age

2-11

12-17

18-24

25-39

40-49

50-59

60 and older

Percent

7

15

19

19

15

11

14

Testing for a Linear Correlation. In Exercises 13โ€“28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Lemons and Car Crashes Listed below are annual data for various years. The data are weights (metric tons) of lemons imported from Mexico and U.S. car crash fatality rates per 100,000 population (based on data from โ€œThe Trouble with QSAR (or How I Learned to Stop Worrying and Embrace Fallacy),โ€ by Stephen Johnson, Journal of Chemical Information and Modeling, Vol. 48, No. 1). Is there sufficient evidence to conclude that there is a linear correlation between weights of lemon imports from Mexico and U.S. car fatality rates? Do the results suggest that imported lemons cause car fatalities?

Lemon Imports

230

265

358

480

530

Crash Fatality Rate

15.9

15.7

15.4

15.3

14.9

In Exercises 5โ€“8, we want to consider the correlation between heights of fathers and mothers and the heights of their sons. Refer to the

StatCrunch display and answer the given questions or identify the indicated items.

The display is based on Data Set 5 โ€œFamily Heightsโ€ in Appendix B.

A son will be born to a father who is 70 in. tall and a mother who is 60 in. tall. Use the multiple regression equation to predict the height of the son. Is the result likely to be a good predicted value? Why or why not?

Interpreting a Computer Display. In Exercises 9โ€“12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, Stat Crunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.


Testing for Correlation Use the information provided in the display to determine the value of the linear correlation coefficient. Is there sufficient evidence to support a claim of a linear correlation between numbers of registered boats and numbers of manatee deaths from encounters with boats?

In exercise 10-1 12. Clusters Refer to the following Minitab-generated scatterplot. The four points in the lower left corner are measurements from women, and the four points in the upper right corner are from men.

a. Examine the pattern of the four points in the lower left corner (from women) only, and subjectively determine whether there appears to be a correlation between x and y for women.

b. Examine the pattern of the four points in the upper right corner (from men) only, and subjectively determine whether there appears to be a correlation between x and y for men.

c. Find the linear correlation coefficient using only the four points in the lower left corner (for women). Will the four points in the upper left corner (for men) have the same linear correlation coefficient?

d. Find the value of the linear correlation coefficient using all eight points. What does that value suggest about the relationship between x and y?

e. Based on the preceding results, what do you conclude? Should the data from women and the data from men be considered together, or do they appear to represent two different and distinct populations that should be analyzed separately?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free