Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Weight , Waist r = 0.885 (x = weight of male, y = waist size of male)

Short Answer

Expert verified

The coefficient of determination is 0.783.

It means 78.3% of the variation is explained by the linear association between the weight and the waist size of a male.

And 21.7% of the variation in the response variable (waist size of male)is explained by other factors and random variation.

Step by step solution

01

Given information

The linear correlation coefficient between the weight and the waist size of a male is 0.885.

02

Coefficient of determination

The square of the linear correlation coefficient between the two variables is the coefficient of determination.

Here, the linear correlation coefficient (r) between the weight and the waist size of a male is 0.885.

Thus,

\(\begin{array}{c}{\rm{Coefficient}}\;{\rm{of}}\;{\rm{determination}} = {r^2}\\ = {0.885^2}\\ = 0.783\end{array}\)

Therefore, the value of the coefficient of determination is 0.783.

03

Percentage of variation

Here,

\(\begin{array}{c}{r^2} = 0.783\\ = \frac{{78.3}}{{100}} \times 100\% \\ = 78.3\% \end{array}\)

Therefore, the percentage of the variation explained by the linear association between the weight and the waist size of males is 98.4%.

The rest \(100\% - 78.3\% = 21.7\% \) variation is explained by other factors and random variation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

z Scores Using only the sunspot numbers, identify the highest number and convert it to a z score. In the context of these sample data, is that highest value “significantly high”? Why or why not?

Effects of an Outlier Refer to the Minitab-generated scatterplot given in Exercise 11 of

Section 10-1 on page 485.

a. Using the pairs of values for all 10 points, find the equation of the regression line.

b. After removing the point with coordinates (10, 10), use the pairs of values for the remaining 9 points and find the equation of the regression line.

c. Compare the results from parts (a) and (b).

What is the relationship between the linear correlation coefficient rand the slope\({b_1}\)of a regression line?

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

Head widths (in.) and weights (lb) were measured for 20 randomly selected bears (from Data Set 9 “Bear Measurements” in Appendix B). The 20 pairs of measurements yield\(\bar x = 6.9\)in.,\(\bar y = 214.3\)lb, r= 0.879, P-value = 0.000, and\(\hat y = - 212 + 61.9x\). Find the best predicted value of\(\hat y\)(weight) given a bear with a head width of 6.5 in.

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Conclusion The linear correlation coefficient r is found to be 0.499, the P-value is 0.393, and the critical values for a 0.05 significance level are\( \pm 0.878\). What should you conclude?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free