Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

Head widths (in.) and weights (lb) were measured for 20 randomly selected bears (from Data Set 9 “Bear Measurements” in Appendix B). The 20 pairs of measurements yield\(\bar x = 6.9\)in.,\(\bar y = 214.3\)lb, r= 0.879, P-value = 0.000, and\(\hat y = - 212 + 61.9x\). Find the best predicted value of\(\hat y\)(weight) given a bear with a head width of 6.5 in.

Short Answer

Expert verified

The predicted value of the \(\hat y\)(weight) given a bear with a head width of 6.5 in is 190.35 lb.

Step by step solution

01

Given information

The sample number of bears is\(n = 20\). x represents thehead widths and y represents head weights.

The mean head width and weight are \(\bar x = 6.9\) and \(\bar y = 214.3\). The correlation coefficient is \(r = 0.879\) and the P-value is 0.000. The regression equation is \(\hat y = - 212 + 61.9x\).

02

Analyse the model

The statistical hypotheses are formed as,

\({H_0}:\)The correlation coefficient is not significant.

\({H_1}:\)The correlation coefficient is significant.

Since the P-value (0.000) is less than the level of significance (0.05). In this case, the null hypothesis is rejected.

Therefore,the correlation coefficient is significant.

Referring to Figure 10-5, the regression model is a good model and thus the regression equation can be used to predict the value of y.

03

Determine the predicted value

Thepredicted value is computed as,

\(\begin{array}{c}\hat y = - 212 + \left( {61.9 \times 6.5} \right)\\ = - 212 + 402.35\\ = 190.35\end{array}\).

Thus, the predicted value of the \(\hat y\)(weight) for a bear with a head width of 6.5 in is 190.35 lb.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Weight , Waist r = 0.885 (x = weight of male, y = waist size of male)

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the pizza costs and subway fares to find the best predicted

subway fare, given that the cost of a slice of pizza is $3.00. Is the best predicted subway fare likely to be implemented?

In Exercises 5–8, we want to consider the correlation between heights of fathers and mothers and the heights of their sons. Refer to the

StatCrunch display and answer the given questions or identify the indicated items.

The display is based on Data Set 5 “Family Heights” in Appendix B.

Should the multiple regression equation be used for predicting the height of a son based on the height of his father and mother? Why or why not?

In Exercises 5–8, use a significance level 0.05 and refer to theaccompanying displays.Cereal Killers The amounts of sugar (grams of sugar per gram of cereal) and calories (per gram of cereal) were recorded for a sample of 16 different cereals. TI-83>84 Plus calculator results are shown here. Is there sufficient evidence to support the claim that there is a linear correlation between sugar and calories in a gram of cereal? Explain.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Internet and Nobel Laureates Listed below are numbers of Internet users per 100 people and numbers of Nobel Laureates per 10 million people (from Data Set 16 “Nobel Laureates and Chocolate” in Appendix B) for different countries. Is there sufficient evidence to conclude that there is a linear correlation between Internet users and Nobel Laureates?

Internet Users

Nobel Laureates

79.5

5.5

79.6

9

56.8

3.3

67.6

1.7

77.9

10.8

38.3

0.1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free