Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Confidence Interval Construct a 95% confidence interval estimate of the mean sunspot number. Write a brief statement interpreting the confidence interval.

Short Answer

Expert verified

The 95% confidence interval for the mean sunspot number is equal to (9.62, 62.21).

There is 95% confidence that the true value of the population mean of the sunspot numbers will lie between 9.62 and 62.21.

Step by step solution

01

Given information

Data are given on two variables, “DJIA” and “Sunspot Number”.

02

Important computations

The mean of the sample sunspot numbers is computed below:

\(\begin{aligned} \bar x &= \frac{{\sum x }}{n}\\ &= \frac{{7.5 + 2.9 + ..... + 79.3}}{8}\\ &= 35.91\end{aligned}\)

The sample standard deviation is computed as shown below:

\(\begin{aligned} s &= \sqrt {\frac{{\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} }}{{n - 1}}} \\ &= \sqrt {\frac{{{{(2.9 - 35.91)}^2} + {{(3.1 - 35.91)}^2} + ...... + {{(79.3 - 35.91)}^2}}}{{8 - 1}}} \\ &= 31.45\end{aligned}\)

The sample size (n) is equal to 8.

03

Level of significance

The following formula is used to compute the level of significance:

\(\begin{aligned} {\rm{Confidence}}\;{\rm{Level}} &= 95\% \\100\left( {1 - \alpha } \right) &= 95\\1 - \alpha &= 0.95\\ &= 0.05\end{aligned}\)

Therefore,

\(\begin{aligned} \frac{\alpha }{2} &= \frac{{0.05}}{2}\\ &= 0.025\end{aligned}\)

04

t-multiplier

The degrees of freedom are computed below:

\(\begin{aligned} df &= n - 1\\ &= 8 - 1\\ &= 7\end{aligned}\)

The value of the t-multiplier at \(\frac{\alpha }{2} = 0.025\) and degrees of freedom equal to 7 is obtained as 2.365.

05

Confidence interval

Substitute the values obtained above to calculate the value of margin of error (E) as shown:

\(\begin{aligned} E &= {t_{\frac{\alpha }{2}}}\frac{s}{{\sqrt n }}\\ &= \left( {2.365} \right)\frac{{31.45}}{{\sqrt 8 }}\\ &= 26.297\end{aligned}\)

Thus, the confidence interval becomes:

\(\begin{aligned} CI &= \left( {\bar x - E,\bar x + E} \right)\\ &= \left( {35.91 - 26.297,35.91 + 26.297} \right)\\ &= \left( {9.613,62.207} \right)\\ &\approx \left( {9.62,62.21} \right)\end{aligned}\)

Therefore, the 95% confidence interval for the mean sunspot number is equal to (9.62, 62.21).

06

Interpretation of the confidence interval

There is 95% confidence that the true value of the population mean of the sunspot numbers will lie between 9.62 and 62.21.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 30 recent Academy Award ceremonies, ages of Best Supporting Actors (x) and ages of Best Supporting Actresses (y) are recorded. The 30 paired ages yield\(\bar x = 52.1\)years,\(\bar y = 37.3\)years, r= 0.076, P-value = 0.691, and

\(\hat y = 34.4 + 0.0547x\). Find the best predicted value of\(\hat y\)(age of Best Supporting Actress) in 1982, when the age of the Best Supporting Actor (x) was 46 years.

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, StatCrunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.

Testing for Correlation Use the information provided in the display to determine the value of the linear correlation coefficient. Is there sufficient evidence to support a claim of a linear correlation between numbers of registered boats and numbers of manatee deaths from encounters with boats?

Interpreting a Graph The accompanying graph plots the numbers of points scored in each Super Bowl to the last Super Bowl at the time of this writing. The graph of the quadratic equation that best fits the data is also shown in red. What feature of the graph justifies the value of\({R^2}\)= 0.255 for the quadratic model?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

CSI Statistics Use the paired foot length and height data from the preceding exercise. Is there sufficient evidence to conclude that there is a linear correlation between foot lengths and heights of males? Based on these results, does it appear that police can use foot length to estimate the height of a male?

Shoe print(cm)

29.7

29.7

31.4

31.8

27.6

Foot length(cm)

25.7

25.4

27.9

26.7

25.1

Height (cm)

175.3

177.8

185.4

175.3

172.7

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the CPI/subway fare data from the preceding exercise and find

the best predicted subway fare for a time when the CPI reaches 500. What is wrong with this prediction?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free