Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

The sample data result in a linear correlation coefficient of r= 0.499 and the regression equation\(\hat y = 3.83 + 2.39x\). What is the best predicted number of burglaries, given an enrollment of 50 (thousand), and how was it found?

Short Answer

Expert verified

Thebest-predicted number of burglaries when the enrollment is 50 (thousand) is 92.6.

The predicted number of burglaries is computed as the mean sampled observation for all burglaries.

Step by step solution

01

Given information

The table represents the number of enrolled students (in thousands) and the number of burglaries for randomly selected large colleges in recent years.


Linear correlation coefficient,\(r = 0.499\)

The regression equation is

\(\hat y = 3.83 + 2.39x\).

02

Discuss the type of model

A model is categorized as good or bad based on the following criteria:

  • The fit of the observations is approximately linear.
  • The measure of the correlation coefficient is significant.
  • The observation at which the response is predicted is not extreme.

A bad model determines the prediction as the average of sample observations of response measures.

03

Compute the best-predicted number of burglaries

Here, the correlation coefficient is small which implies weak linear association; Thus, it is not significant.

Therefore,it is a bad model and the regression equation must not be used topredict the number of burglaries, given an enrollment of 50 (thousand).

Thus, the best-predicted number of burglaries, with an enrollment of 50 (thousand) is obtained by computing the mean of sampled burglaries.

Let y represent the number of burglaries.

The mean value is obtained as the average of five measures.

\(\begin{array}{c}\bar y = \frac{{\sum\limits_{i = 1}^n {{y_i}} }}{n}\\ = \frac{{86 + 57 + 32 + 131 + 157}}{5}\\ = 92.6\end{array}\)

Therefore, the best-predicted number of burglaries, with an enrollment of 50 (thousand), is 92.6.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Critical Thinking: Is the pain medicine Duragesic effective in reducing pain? Listed below are measures of pain intensity before and after using the drug Duragesic (fentanyl) (based on data from Janssen Pharmaceutical Products, L.P.). The data are listed in order by row, and corresponding measures are from the same subject before and after treatment. For example, the first subject had a measure of 1.2 before treatment and a measure of 0.4 after treatment. Each pair of measurements is from one subject, and the intensity of pain was measured using the standard visual analog score. A higher score corresponds to higher pain intensity.

Pain Intensity Before Duragesic Treatment

1.2

1.3

1.5

1.6

8

3.4

3.5

2.8

2.6

2.2

3

7.1

2.3

2.1

3.4

6.4

5

4.2

2.8

3.9

5.2

6.9

6.9

5

5.5

6

5.5

8.6

9.4

10

7.6










Pain Intensity After Duragesic Treatment

0.4

1.4

1.8

2.9

6

1.4

0.7

3.9

0.9

1.8

0.9

9.3

8

6.8

2.3

0.4

0.7

1.2

4.5

2

1.6

2

2

6.8

6.6

4.1

4.6

2.9

5.4

4.8

4.1










Matched Pairs The methods of Section 9-3 can be used to test a claim about matched data. Identify the specific claim that the treatment is effective, then use the methods of Section 9-3 to test that claim.

Effects of Clusters Refer to the Minitab-generated scatterplot given in Exercise 12 of Section 10-1 on page 485.

a. Using the pairs of values for all 8 points, find the equation of the regression line.

b. Using only the pairs of values for the 4 points in the lower left corner, find the equation of the regression line.

c. Using only the pairs of values for the 4 points in the upper right corner, find the equation of the regression line.

d. Compare the results from parts (a), (b), and (c).

Best Multiple Regression Equation For the regression equation given in Exercise 1, the P-value is 0.000 and the adjusted \({R^2}\)value is 0.925. If we were to include an additional predictor variable of neck size (in.), the P-value becomes 0.000 and the adjusted\({R^2}\)becomes 0.933. Given that the adjusted \({R^2}\)value of 0.933 is larger than 0.925, is it better to use the regression equation with the three predictor variables of length, chest size, and neck size? Explain.

Testing for a Linear Correlation. In Exercises 13โ€“28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

22. Crickets and Temperature A classic application of correlation involves the association between the temperature and the number of times a cricket chirps in a minute. Listed below are the numbers of chirps in 1 min and the corresponding temperatures in ยฐF (based on data from The Song of Insects, by George W. Pierce, Harvard University Press). Is there sufficient evidence to conclude that there is a linear correlation between the number of chirps in 1 min and the temperature?

Actress

28

30

29

61

32

33

45

29

62

22

44

54

Actor

43

37

38

45

50

48

60

50

39

55

44

33

Identifying a Model and\({R^2}\)Different samples are collected, and each sample consists of IQ scores of 25 statistics students. Let x represent the standard deviation of the 25 IQ scores in a sample, and let y represent the variance of the 25 IQ scores in a sample. What formula best describes the relationship between x and y? Which of the five models describes this relationship? What should be the value of\({R^2}\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free