Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 50 randomly selected speed dates, attractiveness ratings by males of their

female date partners (x) are recorded along with the attractiveness ratings by females of their male date partners (y); the ratings are from Data Set 18 “Speed Dating” in Appendix B. The 50 paired ratings yield\(\bar x = 6.5\),\(\bar y = 5.9\), r= -0.277, P-value = 0.051, and\(\hat y = 8.18 - 0.345x\). Find the best predicted value of\(\hat y\)(attractiveness rating by female of male) for a date in which the attractiveness rating by the male of the female is x= 8.

Short Answer

Expert verified

The regression equation is\(\hat y = 8.18 - 0.345x\).

The predicted value of \(\hat y\) , that is, attractiveness rating by a female of male for a date in which the attractiveness rating by the male of the female is x= 8 is 5.9.

Step by step solution

01

Given information

The sample number of speed dates is\(n = 20\). Variable x represents theattractiveness ratings by males of their female date partners and y represents the attractiveness ratings by females of their male date partners.

The mean ratings are \(\bar x = 6.5\) and \(\bar y = 5.9\). The correlation coefficient is \(r = - 0.277\) and the P-value is 0.051. The regression equation is \(\hat y = 8.18 - 0.345x\).

02

Analyse the regression model

The statistical hypotheses are formed as,

\({H_0}:\)The correlation coefficient is not significant.

\({H_1}:\)The correlation coefficient is significant.

Since the P-value (0.051) is greater than the level of significance (0.05), in this case, the null hypothesis fails to be rejected.

Therefore, there is enough evidence that the correlation coefficient is not significant.

Refer to Figure 10-5 for the description of a good model.

As the correlation coefficient is not significant, the regression model is a bad model.

Therefore, the regression equation cannot be used to predict the value of y.

03

Determine the predicted value

Resultant to conclusion, the bestpredicted valuefor a bad model is equal to its mean; that is \(\bar y = 5.9\).

Thus, the predicted value of the\(\hat y\)(attractiveness rating by the female of male) for a date in which the attractiveness rating by the male of the female is x= 8 is 5.9.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Correlation Use a 0.05 significance level to test for a linear correlation between the DJIA values and the sunspot numbers. Is the result as you expected? Should anyone consider investing in stocks based on sunspot numbers?

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

1. Data Analysis Use only the sunspot numbers for the following.

a. Find the mean, median, range, standard deviation, and variance.

b. Are the sunspot numbers categorical data or quantitative data?

c. What is the level of measurement of the data? (nominal, ordinal, interval, ratio)

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

22. Crickets and Temperature A classic application of correlation involves the association between the temperature and the number of times a cricket chirps in a minute. Listed below are the numbers of chirps in 1 min and the corresponding temperatures in °F (based on data from The Song of Insects, by George W. Pierce, Harvard University Press). Is there sufficient evidence to conclude that there is a linear correlation between the number of chirps in 1 min and the temperature?

Actress

28

30

29

61

32

33

45

29

62

22

44

54

Actor

43

37

38

45

50

48

60

50

39

55

44

33

Coefficient of Determination Using the heights and weights described in Exercise 1, the linear correlation coefficient r is 0.394. Find the value of the coefficient of determination. What practical information does the coefficient of determination provide?

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

If you had computed the value of the linear correlation coefficient to be 1.500, what should you conclude?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free