Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 50 randomly selected speed dates, attractiveness ratings by males of their

female date partners (x) are recorded along with the attractiveness ratings by females of their male date partners (y); the ratings are from Data Set 18 “Speed Dating” in Appendix B. The 50 paired ratings yield\(\bar x = 6.5\),\(\bar y = 5.9\), r= -0.277, P-value = 0.051, and\(\hat y = 8.18 - 0.345x\). Find the best predicted value of\(\hat y\)(attractiveness rating by female of male) for a date in which the attractiveness rating by the male of the female is x= 8.

Short Answer

Expert verified

The regression equation is\(\hat y = 8.18 - 0.345x\).

The predicted value of \(\hat y\) , that is, attractiveness rating by a female of male for a date in which the attractiveness rating by the male of the female is x= 8 is 5.9.

Step by step solution

01

Given information

The sample number of speed dates is\(n = 20\). Variable x represents theattractiveness ratings by males of their female date partners and y represents the attractiveness ratings by females of their male date partners.

The mean ratings are \(\bar x = 6.5\) and \(\bar y = 5.9\). The correlation coefficient is \(r = - 0.277\) and the P-value is 0.051. The regression equation is \(\hat y = 8.18 - 0.345x\).

02

Analyse the regression model

The statistical hypotheses are formed as,

\({H_0}:\)The correlation coefficient is not significant.

\({H_1}:\)The correlation coefficient is significant.

Since the P-value (0.051) is greater than the level of significance (0.05), in this case, the null hypothesis fails to be rejected.

Therefore, there is enough evidence that the correlation coefficient is not significant.

Refer to Figure 10-5 for the description of a good model.

As the correlation coefficient is not significant, the regression model is a bad model.

Therefore, the regression equation cannot be used to predict the value of y.

03

Determine the predicted value

Resultant to conclusion, the bestpredicted valuefor a bad model is equal to its mean; that is \(\bar y = 5.9\).

Thus, the predicted value of the\(\hat y\)(attractiveness rating by the female of male) for a date in which the attractiveness rating by the male of the female is x= 8 is 5.9.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the relationship between the linear correlation coefficient rand the slope\({b_1}\)of a regression line?

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

If you had computed the value of the linear correlation coefficient to be 1.500, what should you conclude?

Notation Twenty different statistics students are randomly selected. For each of them, their body temperature (°C) is measured and their head circumference (cm) is measured.

a. For this sample of paired data, what does r represent, and what does \(\rho \)represent?

b. Without doing any research or calculations, estimate the value of r.

c. Does r change if the body temperatures are converted to Fahrenheit degrees

Ages of MoviegoersThe table below shows the distribution of the ages of moviegoers(based on data from the Motion Picture Association of America). Use the data to estimate themean, standard deviation, and variance of ages of moviegoers.Hint:For the open-ended categoryof “60 and older,” assume that the category is actually 60–80.

Age

2-11

12-17

18-24

25-39

40-49

50-59

60 and older

Percent

7

15

19

19

15

11

14

Critical Thinking: Is the pain medicine Duragesic effective in reducing pain? Listed below are measures of pain intensity before and after using the drug Duragesic (fentanyl) (based on data from Janssen Pharmaceutical Products, L.P.). The data are listed in order by row, and corresponding measures are from the same subject before and after treatment. For example, the first subject had a measure of 1.2 before treatment and a measure of 0.4 after treatment. Each pair of measurements is from one subject, and the intensity of pain was measured using the standard visual analog score. A higher score corresponds to higher pain intensity.

Pain Intensity Before Duragesic Treatment

1.2

1.3

1.5

1.6

8

3.4

3.5

2.8

2.6

2.2

3

7.1

2.3

2.1

3.4

6.4

5

4.2

2.8

3.9

5.2

6.9

6.9

5

5.5

6

5.5

8.6

9.4

10

7.6










Pain Intensity After Duragesic Treatment

0.4

1.4

1.8

2.9

6

1.4

0.7

3.9

0.9

1.8

0.9

9.3

8

6.8

2.3

0.4

0.7

1.2

4.5

2

1.6

2

2

6.8

6.6

4.1

4.6

2.9

5.4

4.8

4.1










Two Independent Samples The methods of Section 9-2 can be used to test the claim that two populations have the same mean. Identify the specific claim that the treatment is effective, then use the methods of Section 9-2 to test that claim. The methods of Section 9-2 are based on the requirement that the samples are independent. Are they independent in this case?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free