Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Crickets and Temperature r = 0.874 (x = number of cricket chirps in 1 minute, y = temperature in °F)

Short Answer

Expert verified

The coefficient of determination is 0.764.

The percentage of variation that can be explained by the linear association between the number of cricket chirps in 1 minute and the temperature is 76.4%.

23.6% of the variation in the response variable (temperature) is explained by other factors and random variation.

Step by step solution

01

Given information

The linear correlation coefficient between the number of cricket chirps in 1 min and the temperature is 0.874.

02

Coefficient of determination

The coefficient of determination is obtained by taking the square of linear correlation coefficient between the two variables.

Here, the linear correlation coefficient (r) between the number of cricket chirps in 1 minute and the temperature is 0.874.

Thus,

\(\begin{array}{c}{\rm{Coefficient}}\;{\rm{of}}\;{\rm{determination}} = {r^2}\\ = {0.874^2}\\ = 0.764\end{array}\)

Therefore, the value of the coefficient of determination is 0.764.

03

Percentage of variation

Here,

\(\begin{array}{c}{r^2} = 0.764\\ = \frac{{76.4}}{{100}} \times 100\% \\ = 76.4\% \end{array}\)

Therefore, the percentage of the variation explained by the linear association of the number of cricket chirps in 1 min and the temperature is 76.4%.

The remaining \(100\% - 76.4\% = 23.6\% \) variation is explained by other factors and random variation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the foot lengths and heights to find the best predicted height of a male

who has a foot length of 28 cm. Would the result be helpful to police crime scene investigators in trying to describe the male?

Outlier Refer to the accompanying Minitab-generated scatterplot. a. Examine the pattern of all 10 points and subjectively determine whether there appears to be a correlation between x and y. b. After identifying the 10 pairs of coordinates corresponding to the 10 points, find the value of the correlation coefficient r and determine whether there is a linear correlation. c. Now remove the point with coordinates (10, 10) and repeat parts (a) and (b). d. What do you conclude about the possible effect from a single pair of values?

In Exercises 5–8, use a significance level of A = 0.05 and refer to theaccompanying displays.Garbage Data Set 31 “Garbage Weight” in Appendix B includes weights of garbage discarded in one week from 62 different households. The paired weights of paper and glass were used to obtain the XLSTAT results shown here. Is there sufficient evidence to support the claim that there is a linear correlation between weights of discarded paper and glass?

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the shoe print lengths and heights to find the best predicted height of a male who has a shoe print length of 31.3 cm. Would the result be helpful to police crime scene investigators in trying to describe the male?

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed old/new mpg ratings, find the best predicted new

mpg rating for a car with an old rating of 30 mpg. Is there anything to suggest that the prediction is likely to be quite good?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free