Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting\({R^2}\)For the multiple regression equation given in Exercise 1, we get \({R^2}\)= 0.928. What does that value tell us?

Short Answer

Expert verified

The value \({R^2} = 0.928\) indicates that 92.8% variation in the response variable “weight of bears” is explained by the linear relationship between the variables “weight,” “length,” and “chest size”.

Step by step solution

01

Given information

A regression equation is computed to predict the weight of a bear (in lb) using the linear relationship between the variables “weight,” “length,” and “chest size.”

02

Interpretation of \({R^2}\)

The value of \({R^2}\) for a regression model implies how good the predicted model is.

In other words, it indicates the percentage of variation explained by the linear relation of the response variables with the predictor variables.

Here, a regression equation is constructed with “weight of bears” as the response variable and “length” and “chest size.”

The value of\({R^2} = 0.928\)indicates that 92.8% variation in the weight of bears can be explained by their lengths and chest sizes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Conclusion The linear correlation coefficient r is found to be 0.499, the P-value is 0.393, and the critical values for a 0.05 significance level are\( \pm 0.878\). What should you conclude?

Cigarette Nicotine and Carbon Monoxide Refer to the table of data given in Exercise 1 and use the amounts of nicotine and carbon monoxide (CO).

a. Construct a scatterplot using nicotine for the xscale, or horizontal axis. What does the scatterplot suggest about a linear correlation between amounts of nicotine and carbon monoxide?

b. Find the value of the linear correlation coefficient and determine whether there is sufficient evidence to support a claim of a linear correlation between amounts of nicotine and carbon monoxide.

c. Letting yrepresent the amount of carbon monoxide and letting xrepresent the amount of nicotine, find the regression equation.

d. The Raleigh brand king size cigarette is not included in the table, and it has 1.3 mg of nicotine. What is the best predicted amount of carbon monoxide?

Tar

25

27

20

24

20

20

21

24

CO

18

16

16

16

16

16

14

17

Nicotine

1.5

1.7

1.1

1.6

1.1

1.0

1.2

1.4

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Weighing Seals with a Camera Listed below are the overhead widths (cm) of seals

measured from photographs and the weights (kg) of the seals (based on “Mass Estimation of Weddell Seals Using Techniques of Photogrammetry,” by R. Garrott of Montana State University). The purpose of the study was to determine if weights of seals could be determined from overhead photographs. Is there sufficient evidence to conclude that there is a linear correlation between overhead widths of seals from photographs and the weights of the seals?

Overhead Width

7.2

7.4

9.8

9.4

8.8

8.4

Weight

116

154

245

202

200

191

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Tips Listed below are amounts of bills for dinner and the amounts of the tips that were left. The data were collected by students of the author. Is there sufficient evidence to conclude that there is a linear correlation between the bill amounts and the tip amounts? If everyone were to tip with the same percentage, what should be the value of r?

Bill(dollars)

33.46

50.68

87.92

98.84

63.6

107.34

Tip(dollars)

5.5

5

8.08

17

12

16

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Hypothesis Test The mean sunspot number for the past three centuries is 49.7. Use a 0.05 significance level to test the claim that the eight listed sunspot numbers are from a population with a mean equal to 49.7.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free