Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Coefficient of Determination Using the heights and weights described in Exercise 1, the linear correlation coefficient r is 0.394. Find the value of the coefficient of determination. What practical information does the coefficient of determination provide?

Short Answer

Expert verified

The value of the coefficient of determination is 0.155.

It means that 15.5% variation in the weight of males is explained by the linear association between height and weight. Other factors, as well as random variation, account for the remaining 84.5%.

Step by step solution

01

Given information

The linear correlation coefficient between height and weight is 0.394.

02

Coefficient of determination

The coefficient of determination is the square of the linear correlation coefficient between the response variable and the predictor variable.

Here, the linear correlation coefficient (r) between height and weight is 0.394.

Thus,

\(\begin{array}{c}{\rm{Coefficient}}\;{\rm{of}}\;{\rm{Determination}} = {r^2}\\ = {0.394^2}\\ = 0.155\end{array}\)

Therefore, the coefficient of determination is 0.155.

03

Practical interpretation of the coefficient of determination

The actual interpretation of this value is that approximately 15.5% variation in the response variable “weights of males” is explained by the linear relationship between weight and height.

The remaining variation in y is \(100\% - 15.5\% = 84.5\% \). It can be explained by other variables/factors or random variation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explore! Exercises 9 and 10 provide two data sets from “Graphs in Statistical Analysis,” by F. J. Anscombe, the American Statistician, Vol. 27. For each exercise,

a. Construct a scatterplot.

b. Find the value of the linear correlation coefficient r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables.

c. Identify the feature of the data that would be missed if part (b) was completed without constructing the scatterplot.

x

10

8

13

9

11

14

6

4

12

7

5

y

9.14

8.14

8.74

8.77

9.26

8.10

6.13

3.10

9.13

7.26

4.74

a. What is a residual?

b. In what sense is the regression line the straight line that “best” fits the points in a scatterplot?

Confidence Intervals for a Regression Coefficients A confidence interval for the regression coefficient b1 is expressed

\(\begin{array}{l}{b_1} - E < {\beta _1} < {b_1} + E\\\end{array}\)

Where

\(E = {t_{\frac{\alpha }{2}}}{s_{{b_1}}}\)

The critical t score is found using n –(k+1) degrees of freedom, where k, n, and sb1 are described in Exercise 17. Using the sample data from Example 1, n = 153 and k = 2, so df = 150 and the critical t scores are \( \pm \)1.976 for a 95% confidence level. Use the sample data for Example 1, the Stat diskdisplay in Example 1 on page 513, and the Stat Crunchdisplay in Exercise 17 to construct 95% confidence interval estimates of \({\beta _1}\) (the coefficient for the variable representing height) and\({\beta _2}\) (the coefficient for the variable representing waist circumference). Does either confidence interval include 0, suggesting that the variable be eliminated from the regression equation?

Best Multiple Regression Equation For the regression equation given in Exercise 1, the P-value is 0.000 and the adjusted \({R^2}\)value is 0.925. If we were to include an additional predictor variable of neck size (in.), the P-value becomes 0.000 and the adjusted\({R^2}\)becomes 0.933. Given that the adjusted \({R^2}\)value of 0.933 is larger than 0.925, is it better to use the regression equation with the three predictor variables of length, chest size, and neck size? Explain.

Effects of Clusters Refer to the Minitab-generated scatterplot given in Exercise 12 of Section 10-1 on page 485.

a. Using the pairs of values for all 8 points, find the equation of the regression line.

b. Using only the pairs of values for the 4 points in the lower left corner, find the equation of the regression line.

c. Using only the pairs of values for the 4 points in the upper right corner, find the equation of the regression line.

d. Compare the results from parts (a), (b), and (c).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free