Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Best Multiple Regression Equation For the regression equation given in Exercise 1, the P-value is 0.000 and the adjusted \({R^2}\)value is 0.925. If we were to include an additional predictor variable of neck size (in.), the P-value becomes 0.000 and the adjusted\({R^2}\)becomes 0.933. Given that the adjusted \({R^2}\)value of 0.933 is larger than 0.925, is it better to use the regression equation with the three predictor variables of length, chest size, and neck size? Explain.

Short Answer

Expert verified

Yes, it is better to use the regression equation with the predictor variables of length, chest size, and neck size because of the following factors:

  • It is a greater adjusted\({R^2}\)value.
  • The regression is significant.
  • The variation in the response variable of weight is explained more using the regression equation with three predictors or independent variables.

Step by step solution

01

Given information

A regression equation is computed to predict the weight of a bear (inlb) using the predictor variables “weight”, “length,” and “chest size.”

The p-value and the adjusted\({R^2}\)value are 0.000 and 0.925, respectively.

Further, another predictor variable “neck size” is added to the equation, and the p-value and the adjusted \({R^2}\) are 0.000 and 0.933, respectively.

02

Best regression equation

To identify the best regression equation, consider the equation with the highest value of adjusted\({R^2}\).

Here, the regression equation with two independent variables, “length” and “chest size”, has the adjusted \({R^2}\) value of 0.925. Moreover, the p-value for this regression is equal to 0.000, indicating that the regression is significant.

Further, another predictor variable “neck size” is added to the previous equation.

Now, the regression equation with three independent variables of “length”, “chest size” and “neck size” has a new adjusted \({R^2}\) value at 0.933.The new p-value is 0.000, which implies that the new regression is still significant.

Here,

\(\begin{array}{c}{\rm{New}}\;{\rm{Adjusted}}\;{R^2} > {\rm{Adjusted}}\;{R^2}\\0.933 > 0.925\end{array}\)

Since the new regression equation with the variable “neck size” has a larger value of adjusted\({R^2}\)and the regression is significant, the new regression equation is the best. It explains more variation in the response variable as compared to the equation with only two predictors.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Effects of Clusters Refer to the Minitab-generated scatterplot given in Exercise 12 of Section 10-1 on page 485.

a. Using the pairs of values for all 8 points, find the equation of the regression line.

b. Using only the pairs of values for the 4 points in the lower left corner, find the equation of the regression line.

c. Using only the pairs of values for the 4 points in the upper right corner, find the equation of the regression line.

d. Compare the results from parts (a), (b), and (c).

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Weighing Seals with a Camera Listed below are the overhead widths (cm) of seals

measured from photographs and the weights (kg) of the seals (based on “Mass Estimation of Weddell Seals Using Techniques of Photogrammetry,” by R. Garrott of Montana State University). The purpose of the study was to determine if weights of seals could be determined from overhead photographs. Is there sufficient evidence to conclude that there is a linear correlation between overhead widths of seals from photographs and the weights of the seals?

Overhead Width

7.2

7.4

9.8

9.4

8.8

8.4

Weight

116

154

245

202

200

191

Critical Thinking: Is the pain medicine Duragesic effective in reducing pain? Listed below are measures of pain intensity before and after using the drug Duragesic (fentanyl) (based on data from Janssen Pharmaceutical Products, L.P.). The data are listed in order by row, and corresponding measures are from the same subject before and after treatment. For example, the first subject had a measure of 1.2 before treatment and a measure of 0.4 after treatment. Each pair of measurements is from one subject, and the intensity of pain was measured using the standard visual analog score. A higher score corresponds to higher pain intensity.

Pain Intensity Before Duragesic Treatment

1.2

1.3

1.5

1.6

8

3.4

3.5

2.8

2.6

2.2

3

7.1

2.3

2.1

3.4

6.4

5

4.2

2.8

3.9

5.2

6.9

6.9

5

5.5

6

5.5

8.6

9.4

10

7.6










Pain Intensity After Duragesic Treatment

0.4

1.4

1.8

2.9

6

1.4

0.7

3.9

0.9

1.8

0.9

9.3

8

6.8

2.3

0.4

0.7

1.2

4.5

2

1.6

2

2

6.8

6.6

4.1

4.6

2.9

5.4

4.8

4.1










Matched Pairs The methods of Section 9-3 can be used to test a claim about matched data. Identify the specific claim that the treatment is effective, then use the methods of Section 9-3 to test that claim.

Confidence Intervals for a Regression Coefficients A confidence interval for the regression coefficient b1 is expressed

\(\begin{array}{l}{b_1} - E < {\beta _1} < {b_1} + E\\\end{array}\)

Where

\(E = {t_{\frac{\alpha }{2}}}{s_{{b_1}}}\)

The critical t score is found using n –(k+1) degrees of freedom, where k, n, and sb1 are described in Exercise 17. Using the sample data from Example 1, n = 153 and k = 2, so df = 150 and the critical t scores are \( \pm \)1.976 for a 95% confidence level. Use the sample data for Example 1, the Stat diskdisplay in Example 1 on page 513, and the Stat Crunchdisplay in Exercise 17 to construct 95% confidence interval estimates of \({\beta _1}\) (the coefficient for the variable representing height) and\({\beta _2}\) (the coefficient for the variable representing waist circumference). Does either confidence interval include 0, suggesting that the variable be eliminated from the regression equation?

Interpreting r For the same two variables described in Exercise 1, if we find that r = 0, does that indicate that there is no association between those two variables?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free