Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed old/new mpg ratings, find the best predicted new

mpg rating for a car with an old rating of 30 mpg. Is there anything to suggest that the prediction is likely to be quite good?

Short Answer

Expert verified

The regression equation is\(\hat y = 0.863x + 0.808\).

The best-predicted new mpg rating for a car with an old rating of 30 mpg will be approximately 26.7 mpg. The predictions are made from a good regression model and are not extrapolated.

Step by step solution

01

Given information

The given data provides the information of the mpg ratings of ‘old’ and ‘new’ cars, as follows.

02

State the equation for the estimated regression line

The formula for the estimated regression line is

\(y = {b_0} + {b_1}x\).

Here,

\({b_0}\)is the Y-intercept,

\({b_1}\)is the slope,

\(x\)is the explanatory variable, and

\(\hat y\)is the response variable (predicted value).

Let X denote the mpg ratings of the old cars and Y denote the mpg ratings of the new cars.

03

Compute the slope and intercept

The calculations required to compute the slope and intercept are as follows.

The sample size is \(\left( n \right) = 11\).

The slope is computed as

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( x \right)}^2}}}\\ = \frac{{11 \times 5569 - 255 \times 229}}{{11 \times 6213 - {{255}^2}}}\\ \approx 0.863\end{array}\).

The intercept is computed as

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{229 \times 6213 - 255 \times 5569}}{{11 \times 6213 - {{255}^2}}}\\ \approx 0.808\end{array}\).

So, estimated regression equation is

\(\begin{array}{c}\hat y = {b_0} + {b_1}x\\ = 0.808 + 0.863x\end{array}\).

04

Check the model

Refer to exercise 20 of section 10-1 for the following result.

1) The scatter plot shows an approximate linear relationship between the variables.

2) The P-value is 0.000.

As the P-value is less than the level of significance (0.05), the null hypothesis is rejected.

Therefore, the correlation is statistically significant.

Referring to figure 10-5, the criteria for a good regression model are satisfied.

Thus, the regression equation can be used to make the prediction.

05

Compute the predicted value 

Substitute the 30 mpg rating (an old rating) in the estimated linear regression model for the prediction of the new mpg rating car.

\(\begin{array}{c}\hat y = {b_0} + {b_1}x\\ = 0.808 + 0.863 \times 30\\ = 26.7\end{array}\).

Therefore, the best-predicted new mpg rating for a car with an old rating of 30 mpg will be approximately 26.7 mpg.

06

Express the characteristic that makes the prediction good

The prediction is made using a regression equation of a good regression model. Also, the value that is predicted lies between the range of sampled observations.

Thus, the prediction is not extrapolated. Therefore, it is suggestive that the prediction is likely to be quite good.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Sports Diameters (cm), circumferences (cm), and volumes (cm3) from balls used in different sports are listed in the table below. Is there sufficient evidence to conclude that there is a linear correlation between diameters and circumferences? Does the scatterplot confirm a linear association?


Diameter

Circumference

Volume

Baseball

7.4

23.2

212.2

Basketball

23.9

75.1

7148.1

Golf

4.3

13.5

41.6

Soccer

21.8

68.5

5424.6

Tennis

7

22

179.6

Ping-Pong

4

12.6

33.5

Volleyball

20.9

65.7

4780.1

Softball

9.7

30.5

477.9

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed lemon/crash data, find the best predicted crash fatality rate for a year in which there are 500 metric tons of lemon imports. Is the prediction worthwhile?

Time and Motion In a physics experiment at Doane College, a soccer ball was thrown upward from the bed of a moving truck. The table below lists the time (sec) that has lapsed from the throw and the height (m) of the soccer ball. What do you conclude about the relationship between time and height? What horrible mistake would be easy to make if the analysis is conducted without a scatterplot?

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Height (m)

0.0

1.7

3.1

3.9

4.5

4.7

4.6

4.1

3.3

2.1

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Oscars Listed below are ages of Oscar winners matched by the years in which the awards were won (from Data Set 14 “Oscar Winner Age” in Appendix B). Is there sufficient evidence to conclude that there is a linear correlation between the ages of Best Actresses and Best Actors? Should we expect that there would be a correlation?

Actress

28

30

29

61

32

33

45

29

62

22

44

54

Actor

43

37

38

45

50

48

60

50

39

55

44

33

In exercise 10-1 12. Clusters Refer to the following Minitab-generated scatterplot. The four points in the lower left corner are measurements from women, and the four points in the upper right corner are from men.

a. Examine the pattern of the four points in the lower left corner (from women) only, and subjectively determine whether there appears to be a correlation between x and y for women.

b. Examine the pattern of the four points in the upper right corner (from men) only, and subjectively determine whether there appears to be a correlation between x and y for men.

c. Find the linear correlation coefficient using only the four points in the lower left corner (for women). Will the four points in the upper left corner (for men) have the same linear correlation coefficient?

d. Find the value of the linear correlation coefficient using all eight points. What does that value suggest about the relationship between x and y?

e. Based on the preceding results, what do you conclude? Should the data from women and the data from men be considered together, or do they appear to represent two different and distinct populations that should be analyzed separately?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free