Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed old/new mpg ratings, find the best predicted new

mpg rating for a car with an old rating of 30 mpg. Is there anything to suggest that the prediction is likely to be quite good?

Short Answer

Expert verified

The regression equation is\(\hat y = 0.863x + 0.808\).

The best-predicted new mpg rating for a car with an old rating of 30 mpg will be approximately 26.7 mpg. The predictions are made from a good regression model and are not extrapolated.

Step by step solution

01

Given information

The given data provides the information of the mpg ratings of ‘old’ and ‘new’ cars, as follows.

02

State the equation for the estimated regression line

The formula for the estimated regression line is

\(y = {b_0} + {b_1}x\).

Here,

\({b_0}\)is the Y-intercept,

\({b_1}\)is the slope,

\(x\)is the explanatory variable, and

\(\hat y\)is the response variable (predicted value).

Let X denote the mpg ratings of the old cars and Y denote the mpg ratings of the new cars.

03

Compute the slope and intercept

The calculations required to compute the slope and intercept are as follows.

The sample size is \(\left( n \right) = 11\).

The slope is computed as

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( x \right)}^2}}}\\ = \frac{{11 \times 5569 - 255 \times 229}}{{11 \times 6213 - {{255}^2}}}\\ \approx 0.863\end{array}\).

The intercept is computed as

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{229 \times 6213 - 255 \times 5569}}{{11 \times 6213 - {{255}^2}}}\\ \approx 0.808\end{array}\).

So, estimated regression equation is

\(\begin{array}{c}\hat y = {b_0} + {b_1}x\\ = 0.808 + 0.863x\end{array}\).

04

Check the model

Refer to exercise 20 of section 10-1 for the following result.

1) The scatter plot shows an approximate linear relationship between the variables.

2) The P-value is 0.000.

As the P-value is less than the level of significance (0.05), the null hypothesis is rejected.

Therefore, the correlation is statistically significant.

Referring to figure 10-5, the criteria for a good regression model are satisfied.

Thus, the regression equation can be used to make the prediction.

05

Compute the predicted value 

Substitute the 30 mpg rating (an old rating) in the estimated linear regression model for the prediction of the new mpg rating car.

\(\begin{array}{c}\hat y = {b_0} + {b_1}x\\ = 0.808 + 0.863 \times 30\\ = 26.7\end{array}\).

Therefore, the best-predicted new mpg rating for a car with an old rating of 30 mpg will be approximately 26.7 mpg.

06

Express the characteristic that makes the prediction good

The prediction is made using a regression equation of a good regression model. Also, the value that is predicted lies between the range of sampled observations.

Thus, the prediction is not extrapolated. Therefore, it is suggestive that the prediction is likely to be quite good.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Old Faithful Listed below are duration times (seconds) and time intervals (min) to the next eruption for randomly selected eruptions of the Old Faithful geyser in Yellowstone National Park. Is there sufficient evidence to conclude that there is a linear correlation between duration times and interval after times?

Duration

242

255

227

251

262

207

140

Interval After

91

81

91

92

102

94

91

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

CSI Statistics Police sometimes measure shoe prints at crime scenes so that they can learn something about criminals. Listed below are shoe print lengths, foot lengths, and heights of males (from Data Set 2 “Foot and Height” in Appendix B). Is there sufficient evidence to conclude that there is a linear correlation between shoe print lengths and heights of males? Based on these results, does it appear that police can use a shoe print length to estimate the height of a male?

Shoe print(cm)

29.7

29.7

31.4

31.8

27.6

Foot length(cm)

25.7

25.4

27.9

26.7

25.1

Height (cm)

175.3

177.8

185.4

175.3

172.7

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the CPI/subway fare data from the preceding exercise and find

the best predicted subway fare for a time when the CPI reaches 500. What is wrong with this prediction?

Scatterplots Match these values of r with the five scatterplots shown below: 0.268, 0.992, -1, 0.746, and 1.

Prediction Interval Using the heights and weights described in Exercise 1, a height of 180 cm is used to find that the predicted weight is 91.3 kg, and the 95% prediction interval is (59.0 kg, 123.6 kg). Write a statement that interprets that prediction interval. What is the major advantage of using a prediction interval instead of simply using the predicted weight of 91.3 kg? Why is the terminology of prediction interval used instead of confidence interval?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free