Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\({s_e}\)Notation Using Data Set 1 “Body Data” in Appendix B, if we let the predictor variable x represent heights of males and let the response variable y represent weights of males, the sample of 153 heights and weights results in\({s_e}\)= 16.27555 cm. In your own words, describe what that value of \({s_e}\)represents.

Short Answer

Expert verified

The value of \({s_e}\) equal to 16.27555 cm explains that the average distance of the observed value of weights of males from the fitted values is obtained using the regression equation.

Step by step solution

01

Given information

A regression equation between the response variable “weights of male” and the predictor variable “heights of males” is given.

The value of \({s_e}\) is 16.27555 cm.

02

Meaning of \({s_e}\)

\({s_e}\)stands for the standard error of the estimate.

It describes the mean distance between the observed values of the response variable and the predicted values.

Here, the response variable is the weights of males, and the standard error of the estimate\(\left( {{s_e}} \right)\)is 16.27555 cm.

Thus, the standard error of estimate tells that the average difference between the measured weights and the weights predicted by the regression equation equals 16.27555 cm.

It represents how much the sample points deviate from the regression line.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Global Warming If we find that there is a linear correlation between the concentration of carbon dioxide (\(C{O_2}\)) in our atmosphere and the global mean temperature, does that indicate that changes in (\(C{O_2}\))cause changes in the global mean temperature? Why or why not?

In Exercises 9 and 10, use the given data to find the equation of the regression line. Examine the scatterplot and identify a characteristic of the data that is ignored by the regression line.

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, Stat Crunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.


Testing for Correlation Use the information provided in the display to determine the value of the linear correlation coefficient. Is there sufficient evidence to support a claim of a linear correlation between numbers of registered boats and numbers of manatee deaths from encounters with boats?

Explore! Exercises 9 and 10 provide two data sets from “Graphs in Statistical Analysis,” by F. J. Anscombe, the American Statistician, Vol. 27. For each exercise,

a. Construct a scatterplot.

b. Find the value of the linear correlation coefficient r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables.

c. Identify the feature of the data that would be missed if part (b) was completed without constructing the scatterplot.

x

10

8

13

9

11

14

6

4

12

7

5

y

9.14

8.14

8.74

8.77

9.26

8.10

6.13

3.10

9.13

7.26

4.74

Interpreting the Coefficient of Determination. In Exercises 5–8, use the value of the linear correlation coefficient r to find the coefficient of determination and the percentage of the total variation that can be explained by the linear relationship between the two variables.

Pizza and Subways r = 0.992 (x = cost of a slice of pizza, y = subway fare in New York City

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free