Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Use the foot lengths and heights to find the best predicted height of a male

who has a foot length of 28 cm. Would the result be helpful to police crime scene investigators in trying to describe the male?

Short Answer

Expert verified

The regression equation is\(\hat y = 125 + 1.73x\).

The best-predicted value is the mean height of 177 cm. It will not be helpful to the police in trying to obtain a description of the male.

Step by step solution

01

Given information

The given data provides the information of the shoe print (in cm) and the height (in cm), as follows.

02

State the equation for the regression linea

The formula for the estimated regression line is

\(y = {b_0} + {b_1}x\).

Here,

\({b_0}\)is the Y-intercept,

\({b_1}\)is the slope,

\(x\)is the explanatory variable, and

\(\hat y\)is the response variable (predicted value).

Let X denote the foot length (in cm) and Y denote the height (in cm) of the male.

03

Compute the slope and intercept

The calculations required to compute the slope and intercept are as follows.

The sample size is \(\left( n \right) = 5\).

The slope is computed as

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{5 \times 23209.27 - 130.8 \times 886.5}}{{5 \times 3426.96 - {{130.8}^2}}}\\ = 3.5226\end{array}\).

The intercept is computed as

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{886.5 \times 3426.96 - 130.8 \times 23209.27}}{{5 \times 3426.96 - {{130.8}^2}}}\\ = 85.15\end{array}\).

The estimated regression equation is

\(\begin{array}{c}\hat y = {b_0} + {b_1}x\\ = 85.15 + 3.5226x\end{array}\).

04

Checking the model

Refer to exercise 18 of section 10-1 for the following result.

1) The scatter plot does not show an approximate linear relationship between the variables.

2) The P-value is 0.085.

As the P-value is greater than the level of significance (0.05), the null hypothesis is failed to be rejected.

Therefore, the correlation is not significant.

Referring to figure 10-5, the criteria for a good regression model are not satisfied.

The best-predicted value of a variable is simply its sample mean.

05

Compute the prediction 

The best-predicted height of a male who has a foot length of 28 cm is obtained as the mean of the sample responses.

The sample mean is computed as

\(\begin{array}{c}\bar y = \frac{{\sum\limits_{i = }^n {{y_i}} }}{n}\\ = \frac{{\left( {175.3 + 177.8 + ... + 172.7} \right)}}{5}\\ = 177.3\end{array}\).

Therefore, the best-predicted height of the male who has a foot length of 28 cm will be 177 cm. As the best-predicted value is the mean height (177 cm), it will not help the police to describe the male.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Conclusion The linear correlation coefficient r is found to be 0.499, the P-value is 0.393, and the critical values for a 0.05 significance level are\( \pm 0.878\). What should you conclude?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Tips Listed below are amounts of bills for dinner and the amounts of the tips that were left. The data were collected by students of the author. Is there sufficient evidence to conclude that there is a linear correlation between the bill amounts and the tip amounts? If everyone were to tip with the same percentage, what should be the value of r?

Bill(dollars)

33.46

50.68

87.92

98.84

63.6

107.34

Tip(dollars)

5.5

5

8.08

17

12

16

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Old Faithful Listed below are duration times (seconds) and time intervals (min) to the next eruption for randomly selected eruptions of the Old Faithful geyser in Yellowstone National Park. Is there sufficient evidence to conclude that there is a linear correlation between duration times and interval after times?

Duration

242

255

227

251

262

207

140

Interval After

91

81

91

92

102

94

91

The following exercises are based on the following sample data consisting of numbers of enrolled students (in thousands) and numbers of burglaries for randomly selected large colleges in a recent year (based on data from the New York Times).

Enrollment (thousands)

53

28

27

36

42

Burglaries

86

57

32

131

157

True or false: If the sample data lead us to the conclusion that there is sufficient evidence to support the claim of a linear correlation between enrollment and number of burglaries, then we could also conclude that higher enrollments cause increases in numbers of burglaries.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Internet and Nobel Laureates Listed below are numbers of Internet users per 100 people and numbers of Nobel Laureates per 10 million people (from Data Set 16 “Nobel Laureates and Chocolate” in Appendix B) for different countries. Is there sufficient evidence to conclude that there is a linear correlation between Internet users and Nobel Laureates?

Internet Users

Nobel Laureates

79.5

5.5

79.6

9

56.8

3.3

67.6

1.7

77.9

10.8

38.3

0.1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free