Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding a Prediction Interval. In Exercises 13–16, use the paired data consisting of registered Florida boats (tens of thousands) and manatee fatalities from boat encounters listed in Data Set 10 “Manatee Deaths” in Appendix B. Let x represent number of registered boats and let y represent the corresponding number of manatee deaths. Use the given number of registered boats and the given confidence level to construct a prediction interval estimate of manatee deaths.

Boats Use x = 96 (for 960,000 registered boats) with a 95% confidence level.

Short Answer

Expert verified

The 95% prediction interval for the number of manatee deaths when the number of registered boats is equal to 960,000 is (65.1 manatees,106.8 manatees).

Step by step solution

01

Given information

The paired data for the variables ‘number of registered boats’ and ‘number of manatee deaths’ are provided.

Some important values inferred from the question are as follows.

\(\begin{array}{c}Confidence\;Level = 95\% \\{x_0} = 96\\n = 24\end{array}\).

02

Regression equation

Let x denote the variable ‘registered boats’.

Let y denote the variable ‘number of manatee deaths’

The regression equation of y on x has the following notation:

\(\hat y = {b_0} + {b_1}x\),where

\({b_0}\)is the intercept term, and

\({b_1}\)is the slope coefficient.

The following calculations are done to compute the intercept and the slope coefficient:

The value of the y-intercept is computed below.

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{\left( {1700} \right)\left( {177128} \right) - \left( {2046} \right)\left( {148731} \right)}}{{24\left( {177128} \right) - {{\left( {2046} \right)}^2}}}\\ = - 49.048987\end{array}\).

The value of the slope coefficient is computed below.

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{\left( {24} \right)\left( {148731} \right) - \left( {2046} \right)\left( {1700} \right)}}{{24\left( {177128} \right) - {{\left( {2046} \right)}^2}}}\\ = 1.4062442\end{array}\).

Thus, the regression equation becomes

\(\hat y = - 49.048987 + 1.4062442x\).

03

Predicted value \(\left( {\hat y} \right)\)

The regression equation of y on x is

\(\hat y = - 49.048987 + 1.4062442x\).

Substituting the value of\({x_0} = 96\), the following value of\(\hat y\)is obtained:

\(\begin{array}{c}\hat y = - 49.048987 + 1.4062442\left( {96} \right)\\ = 85.9504562\end{array}\).

04

Level of significance and degrees of freedom

The following formula is used to compute the level of significance:

\(\begin{array}{c}Confidence\;Level = 95\% \\100\left( {1 - \alpha } \right) = 95\\1 - \alpha = 0.95\\\alpha = 1 - 0.95\\ = 0.05\end{array}\).

Therefore,

\(\begin{array}{c}\frac{\alpha }{2} = \frac{{0.05}}{2}\\ = 0.025\end{array}\).

The degree of freedom for computing the value of the t-multiplier isshown below.

\(\begin{array}{c}df = n - 2\\ = 24 - 2\\ = 22\end{array}\).

05

Value of \({t_{\frac{\alpha }{2}}}\)

The value of the t-multiplier for a level of significance equal to 0.025 and a degree of freedom equal to 22 is 2.0739.

06

Value of \({s_e}\)

The given table shows all the important values to compute the standard error of the estimate.

The value of the standard error of the estimate is computed, as shown below.

\(\begin{array}{c}{s_e} = \sqrt {\frac{{\sum {{{\left( {y - \hat y} \right)}^2}} }}{{n - 2}}} \\ = \sqrt {\frac{{2053.167806}}{{24 - 2}}} \\ = 9.6605284\end{array}\).

Thus, \({s_e} = 9.6605284\)

07

Value of \(\bar x\)

The value of\(\bar x\)is computed as follows.

\(\begin{array}{c}\bar x = \frac{{68 + 68 + .... + 90}}{{24}}\\ = 85.25\end{array}\).

08

Value of \({\left( {\sum x } \right)^2}\)

The value of the term\({\left( {\sum x } \right)^2}\)is computed, as shown below.

\(\begin{array}{c}{\left( {\sum x } \right)^2} = {\left( {68 + 68 + ..... + 90} \right)^2}\\ = 4186116\end{array}\),

09

Value of \(\left( {\sum {{x^2}} } \right)\)

The value of the term\(\left( {\sum {{x^2}} } \right)\)is computed, as shown below.

\(\begin{array}{c}\left( {\sum {{x^2}} } \right) = {68^2} + {68^2} + ...... + {90^2}\\ = 177128\end{array}\)

10

Prediction interval

Substitute the values obtained above to calculate the value of the margin of error (E), as shown below.

\(\begin{array}{c}E = {t_{\frac{\alpha }{2}}}{s_e}\sqrt {1 + \frac{1}{n} + \frac{{n{{\left( {{x_0} - \bar x} \right)}^2}}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}} \\ = \left( {2.0739} \right)\left( {9.6605284} \right)\sqrt {1 + \frac{1}{{24}} + \frac{{24{{\left( {96 - 85.25} \right)}^2}}}{{24\left( {177128} \right) - \left( {4186116} \right)}}} \\ = 20.8629828\end{array}\)

Thus, the prediction interval becomes

\(\begin{array}{c}PI = \left( {\hat y - E,\hat y + E} \right)\\ = \left( {85.9504562 - 20.8629828,85.9504562 + 20.8629828} \right)\\ \approx \left( {65.1,106.8} \right)\end{array}\)

Therefore, the 95% prediction interval for the number of manatee deaths when the number of registered boats is equal to 960,000 is (65.1 manatees, 106.8 manatees).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–8, we want to consider the correlation between heights of fathers and mothers and the heights of their sons. Refer to the

StatCrunch display and answer the given questions or identify the indicated items.

The display is based on Data Set 5 “Family Heights” in Appendix B.

Should the multiple regression equation be used for predicting the height of a son based on the height of his father and mother? Why or why not?

Terminology Using the lengths (in.), chest sizes (in.), and weights (lb) of bears from Data Set 9 “Bear Measurements” in Appendix B, we get this regression equation: Weight = -274 + 0.426 Length +12.1 Chest Size. Identify the response and predictor variables

Explore! Exercises 9 and 10 provide two data sets from “Graphs in Statistical Analysis,” by F. J. Anscombe, the American Statistician, Vol. 27. For each exercise,

a. Construct a scatterplot.

b. Find the value of the linear correlation coefficient r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables.

c. Identify the feature of the data that would be missed if part (b) was completed without constructing the scatterplot.

x

10

8

13

9

11

14

6

4

12

7

5

y

9.14

8.14

8.74

8.77

9.26

8.10

6.13

3.10

9.13

7.26

4.74

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

CSI Statistics Police sometimes measure shoe prints at crime scenes so that they can learn something about criminals. Listed below are shoe print lengths, foot lengths, and heights of males (from Data Set 2 “Foot and Height” in Appendix B). Is there sufficient evidence to conclude that there is a linear correlation between shoe print lengths and heights of males? Based on these results, does it appear that police can use a shoe print length to estimate the height of a male?

Shoe print(cm)

29.7

29.7

31.4

31.8

27.6

Foot length(cm)

25.7

25.4

27.9

26.7

25.1

Height (cm)

175.3

177.8

185.4

175.3

172.7

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Confidence Interval Construct a 95% confidence interval estimate of the mean sunspot number. Write a brief statement interpreting the confidence interval.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free