Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding a Prediction Interval. In Exercises 13–16, use the paired data consisting of registered Florida boats (tens of thousands) and manatee fatalities from boat encounters listed in Data Set 10 “Manatee Deaths” in Appendix B. Let x represent number of registered boats and let y represent the corresponding number of manatee deaths. Use the given number of registered boats and the given confidence level to construct a prediction interval estimate of manatee deaths.

Boats Use x = 96 (for 960,000 registered boats) with a 95% confidence level.

Short Answer

Expert verified

The 95% prediction interval for the number of manatee deaths when the number of registered boats is equal to 960,000 is (65.1 manatees,106.8 manatees).

Step by step solution

01

Given information

The paired data for the variables ‘number of registered boats’ and ‘number of manatee deaths’ are provided.

Some important values inferred from the question are as follows.

\(\begin{array}{c}Confidence\;Level = 95\% \\{x_0} = 96\\n = 24\end{array}\).

02

Regression equation

Let x denote the variable ‘registered boats’.

Let y denote the variable ‘number of manatee deaths’

The regression equation of y on x has the following notation:

\(\hat y = {b_0} + {b_1}x\),where

\({b_0}\)is the intercept term, and

\({b_1}\)is the slope coefficient.

The following calculations are done to compute the intercept and the slope coefficient:

The value of the y-intercept is computed below.

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{\left( {1700} \right)\left( {177128} \right) - \left( {2046} \right)\left( {148731} \right)}}{{24\left( {177128} \right) - {{\left( {2046} \right)}^2}}}\\ = - 49.048987\end{array}\).

The value of the slope coefficient is computed below.

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{\left( {24} \right)\left( {148731} \right) - \left( {2046} \right)\left( {1700} \right)}}{{24\left( {177128} \right) - {{\left( {2046} \right)}^2}}}\\ = 1.4062442\end{array}\).

Thus, the regression equation becomes

\(\hat y = - 49.048987 + 1.4062442x\).

03

Predicted value \(\left( {\hat y} \right)\)

The regression equation of y on x is

\(\hat y = - 49.048987 + 1.4062442x\).

Substituting the value of\({x_0} = 96\), the following value of\(\hat y\)is obtained:

\(\begin{array}{c}\hat y = - 49.048987 + 1.4062442\left( {96} \right)\\ = 85.9504562\end{array}\).

04

Level of significance and degrees of freedom

The following formula is used to compute the level of significance:

\(\begin{array}{c}Confidence\;Level = 95\% \\100\left( {1 - \alpha } \right) = 95\\1 - \alpha = 0.95\\\alpha = 1 - 0.95\\ = 0.05\end{array}\).

Therefore,

\(\begin{array}{c}\frac{\alpha }{2} = \frac{{0.05}}{2}\\ = 0.025\end{array}\).

The degree of freedom for computing the value of the t-multiplier isshown below.

\(\begin{array}{c}df = n - 2\\ = 24 - 2\\ = 22\end{array}\).

05

Value of \({t_{\frac{\alpha }{2}}}\)

The value of the t-multiplier for a level of significance equal to 0.025 and a degree of freedom equal to 22 is 2.0739.

06

Value of \({s_e}\)

The given table shows all the important values to compute the standard error of the estimate.

The value of the standard error of the estimate is computed, as shown below.

\(\begin{array}{c}{s_e} = \sqrt {\frac{{\sum {{{\left( {y - \hat y} \right)}^2}} }}{{n - 2}}} \\ = \sqrt {\frac{{2053.167806}}{{24 - 2}}} \\ = 9.6605284\end{array}\).

Thus, \({s_e} = 9.6605284\)

07

Value of \(\bar x\)

The value of\(\bar x\)is computed as follows.

\(\begin{array}{c}\bar x = \frac{{68 + 68 + .... + 90}}{{24}}\\ = 85.25\end{array}\).

08

Value of \({\left( {\sum x } \right)^2}\)

The value of the term\({\left( {\sum x } \right)^2}\)is computed, as shown below.

\(\begin{array}{c}{\left( {\sum x } \right)^2} = {\left( {68 + 68 + ..... + 90} \right)^2}\\ = 4186116\end{array}\),

09

Value of \(\left( {\sum {{x^2}} } \right)\)

The value of the term\(\left( {\sum {{x^2}} } \right)\)is computed, as shown below.

\(\begin{array}{c}\left( {\sum {{x^2}} } \right) = {68^2} + {68^2} + ...... + {90^2}\\ = 177128\end{array}\)

10

Prediction interval

Substitute the values obtained above to calculate the value of the margin of error (E), as shown below.

\(\begin{array}{c}E = {t_{\frac{\alpha }{2}}}{s_e}\sqrt {1 + \frac{1}{n} + \frac{{n{{\left( {{x_0} - \bar x} \right)}^2}}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}} \\ = \left( {2.0739} \right)\left( {9.6605284} \right)\sqrt {1 + \frac{1}{{24}} + \frac{{24{{\left( {96 - 85.25} \right)}^2}}}{{24\left( {177128} \right) - \left( {4186116} \right)}}} \\ = 20.8629828\end{array}\)

Thus, the prediction interval becomes

\(\begin{array}{c}PI = \left( {\hat y - E,\hat y + E} \right)\\ = \left( {85.9504562 - 20.8629828,85.9504562 + 20.8629828} \right)\\ \approx \left( {65.1,106.8} \right)\end{array}\)

Therefore, the 95% prediction interval for the number of manatee deaths when the number of registered boats is equal to 960,000 is (65.1 manatees, 106.8 manatees).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Stocks and Sunspots. Listed below are annual high values of the Dow Jones Industrial Average (DJIA) and annual mean sunspot numbers for eight recent years. Use the data for Exercises 1–5. A sunspot number is a measure of sunspots or groups of sunspots on the surface of the sun. The DJIA is a commonly used index that is a weighted mean calculated from different stock values.

DJIA

14,198

13,338

10,606

11,625

12,929

13,589

16,577

18,054

Sunspot

Number

7.5

2.9

3.1

16.5

55.7

57.6

64.7

79.3

Confidence Interval Construct a 95% confidence interval estimate of the mean sunspot number. Write a brief statement interpreting the confidence interval.

Finding Critical r Values Table A-6 lists critical values of r for selected values of n and a. More generally, critical r values can be found by using the formula

\(r = \frac{t}{{\sqrt {{t^2} + n - 2} }}\)

where the t value is found from the table of critical t values (Table A-3) assuming a two-tailed case with n - 2 degrees of freedom. Use the formula for r given here and in Table A-3 (with n - 2 degrees of freedom) to find the critical r values corresponding to \({H_1}:\rho \ne 0\), \(\alpha \)= 0.02, and n = 27.

Interpreting r. In Exercises 5–8, use a significance level of A = 0.05 and refer to the accompanying displays.

5. Bear Weight and Chest Size Fifty-four wild bears were anesthetized, and then their weights and chest sizes were measured and listed in Data Set 9 “Bear Measurements” in Appendix B; results are shown in the accompanying Statdisk display. Is there sufficient evidence to support the claim that there is a linear correlation between the weights of bears and their chest sizes? When measuring an anesthetized bear, is it easier to measure chest size than weight? If so, does it appear that a measured chest size can be used to predict the weight?

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, StatCrunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.

Predicting Manatee Fatalities Using x = 85 (for 850,000 registered boats), what is the single value that is the best predicted number of manatee fatalities resulting from encounters with boats?

Critical Thinking: Is the pain medicine Duragesic effective in reducing pain? Listed below are measures of pain intensity before and after using the drug Duragesic (fentanyl) (based on data from Janssen Pharmaceutical Products, L.P.). The data are listed in order by row, and corresponding measures are from the same subject before and after treatment. For example, the first subject had a measure of 1.2 before treatment and a measure of 0.4 after treatment. Each pair of measurements is from one subject, and the intensity of pain was measured using the standard visual analog score. A higher score corresponds to higher pain intensity.

Pain Intensity Before Duragesic Treatment

1.2

1.3

1.5

1.6

8

3.4

3.5

2.8

2.6

2.2

3

7.1

2.3

2.1

3.4

6.4

5

4.2

2.8

3.9

5.2

6.9

6.9

5

5.5

6

5.5

8.6

9.4

10

7.6










Pain Intensity After Duragesic Treatment

0.4

1.4

1.8

2.9

6

1.4

0.7

3.9

0.9

1.8

0.9

9.3

8

6.8

2.3

0.4

0.7

1.2

4.5

2

1.6

2

2

6.8

6.6

4.1

4.6

2.9

5.4

4.8

4.1










Two Independent Samples The methods of Section 9-2 can be used to test the claim that two populations have the same mean. Identify the specific claim that the treatment is effective, then use the methods of Section 9-2 to test that claim. The methods of Section 9-2 are based on the requirement that the samples are independent. Are they independent in this case?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free