Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding a Prediction Interval. In Exercises 13–16, use the paired data consisting of registered Florida boats (tens of thousands) and manatee fatalities from boat encounters listed in Data Set 10 “Manatee Deaths” in Appendix B. Let x represent number of registered boats and let y represent the corresponding number of manatee deaths. Use the given number of registered boats and the given confidence level to construct a prediction interval estimate of manatee deaths.

Boats Use x = 98 (for 980,000 registered boats) with a 95% confidence level.

Short Answer

Expert verified

The 95% prediction interval for the number of manatee deaths when the number of registered boats is equal to 980,000is (67.7 manatees,109.8 manatees).

Step by step solution

01

Given information

The paired data forthe variables ‘number of registered boats’ and ‘number of manatee deaths’ are provided.

Some important values inferred from the question are as follows.

\(\begin{array}{c}{\rm{Confidence}}\;{\rm{level}} = 95\% \\{x_0} = 98\\n = 24\end{array}\).

02

Regression equation

Let x denote the variable ‘registered boats’.

Let y denote the variable ‘number of manatee deaths’.

The regression equation of y on x has the following notation:

\(\hat y = {b_0} + {b_1}x\),where

\({b_0}\)is the intercept term, and

\({b_1}\)is the slope coefficient.

The following calculations are done to compute the intercept and the slope coefficient:

The value of the y-intercept is computed below.

\(\begin{array}{c}{b_0} = \frac{{\left( {\sum y } \right)\left( {\sum {{x^2}} } \right) - \left( {\sum x } \right)\left( {\sum {xy} } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{\left( {1700} \right)\left( {177128} \right) - \left( {2046} \right)\left( {148731} \right)}}{{24\left( {177128} \right) - {{\left( {2046} \right)}^2}}}\\ = - 49.048987\end{array}\).

The value of the slope coefficient is computed below.

\(\begin{array}{c}{b_1} = \frac{{n\left( {\sum {xy} } \right) - \left( {\sum x } \right)\left( {\sum y } \right)}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}\\ = \frac{{\left( {24} \right)\left( {148731} \right) - \left( {2046} \right)\left( {1700} \right)}}{{24\left( {177128} \right) - {{\left( {2046} \right)}^2}}}\\ = 1.4062442\end{array}\).

Thus, the regression equation becomes

\(\hat y = - 49.048987 + 1.4062442x\).

03

Predicted value \(\left( {\hat y} \right)\)

The regression equation of y on x is

\(\hat y = - 49.048987 + 1.4062442x\).

Substituting the value of\({x_0} = 98\), the following value of\(\hat y\)is obtained:

\(\begin{array}{c}\hat y = - 49.048987 + 1.4062442\left( {98} \right)\\ = 88.7629446\end{array}\).

04

Level of significance and degrees of freedom

The following formula is used to compute the level of significance:

\(\begin{array}{c}{\rm{Confidence}}\;{\rm{level}} = 95\% \\100\left( {1 - \alpha } \right) = 95\\1 - \alpha = 0.95\\ = 0.05\end{array}\).

Therefore,

\(\begin{array}{c}\frac{\alpha }{2} = \frac{{0.05}}{2}\\ = 0.025\end{array}\).

The degree of freedom for computing the value of the t-multiplier isshown below.

\(\begin{array}{c}df = n - 2\\ = 24 - 2\\ = 22\end{array}\).

05

Value of \({t_{\frac{\alpha }{2}}}\)

The value of the t-multiplier for the level of significance equal to 0.025 and the degree of freedom equal to 22 is 2.0739.

06

Value of \({s_e}\)

The given table shows all the important values to compute the standard error of the estimate.

The value of the standard error of the estimate is computed, as shown below.

\(\begin{array}{c}{s_e} = \sqrt {\frac{{\sum {{{\left( {y - \hat y} \right)}^2}} }}{{n - 2}}} \\ = \sqrt {\frac{{2053.167806}}{{24 - 2}}} \\ = 9.6605284\end{array}\).

Thus, \({s_e} = 9.6605284\)

07

Value of \(\bar x\)

The value of\(\bar x\)is computed as follows.

\(\begin{array}{c}\bar x = \frac{{68 + 68 + .... + 90}}{{24}}\\ = 85.25\end{array}\).

08

Value of \({\left( {\sum x } \right)^2}\)

The value of the term\({\left( {\sum x } \right)^2}\)is computed, as shown below.

\(\begin{array}{c}{\left( {\sum x } \right)^2} = {\left( {68 + 68 + ..... + 90} \right)^2}\\ = 4186116\end{array}\).

09

Value of \(\left( {\sum {{x^2}} } \right)\)

The value of the term\(\left( {\sum {{x^2}} } \right)\)is computed, as shown below.

\(\begin{array}{c}\left( {\sum {{x^2}} } \right) = {68^2} + {68^2} + ...... + {90^2}\\ = 177128\end{array}\)

10

Prediction interval

Substitute the values obtained above to calculate the value of the margin of error (E), as shown below.

\(\begin{array}{c}E = {t_{\frac{\alpha }{2}}}{s_e}\sqrt {1 + \frac{1}{n} + \frac{{n{{\left( {{x_0} - \bar x} \right)}^2}}}{{n\left( {\sum {{x^2}} } \right) - {{\left( {\sum x } \right)}^2}}}} \\ = \left( {2.0739} \right)\left( {9.6605284} \right)\sqrt {1 + \frac{1}{{24}} + \frac{{24{{\left( {98 - 85.25} \right)}^2}}}{{24\left( {177128} \right) - \left( {4186116} \right)}}} \\ = 21.02937478\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Outlier Refer to the accompanying Minitab-generated scatterplot. a. Examine the pattern of all 10 points and subjectively determine whether there appears to be a correlation between x and y. b. After identifying the 10 pairs of coordinates corresponding to the 10 points, find the value of the correlation coefficient r and determine whether there is a linear correlation. c. Now remove the point with coordinates (10, 10) and repeat parts (a) and (b). d. What do you conclude about the possible effect from a single pair of values?

Effects of an Outlier Refer to the Minitab-generated scatterplot given in Exercise 11 of

Section 10-1 on page 485.

a. Using the pairs of values for all 10 points, find the equation of the regression line.

b. After removing the point with coordinates (10, 10), use the pairs of values for the remaining 9 points and find the equation of the regression line.

c. Compare the results from parts (a) and (b).

In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi/gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi/gal).

If only one predictor (x) variable is used to predict the city fuel consumption, which single variable is best? Why?

Prediction Interval Using the heights and weights described in Exercise 1, a height of 180 cm is used to find that the predicted weight is 91.3 kg, and the 95% prediction interval is (59.0 kg, 123.6 kg). Write a statement that interprets that prediction interval. What is the major advantage of using a prediction interval instead of simply using the predicted weight of 91.3 kg? Why is the terminology of prediction interval used instead of confidence interval?

Interpreting\({R^2}\)In Exercise 2, the quadratic model results in = 0.255. Identify the percentage of the variation in Super Bowl points that can be explained by the quadratic model relating the variable of year and the variable of points scored. (Hint: See Example 2.) What does the result suggest about the usefulness of the quadratic model?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free