Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9–12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi, gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi, gal).

A Honda Civic weighs 2740 lb, it has an engine displacement of 1.8 L, and its highway fuel consumption is 36 mi/gal. What is the best predicted value of the city fuel consumption? Is that predicted value likely to be a good estimate? Is that predicted value likely to be very accurate?

Short Answer

Expert verified

The best predicted value of the city fuel consumption is 26.3 mi/gal.

Step by step solution

01

Given information

The table represents the model with different predictor variables along with the respective P-values,\({R^2}\), Adjusted\({R^2}\)and the regression equations.

A Honda Civic weighs 2740 lb, it has an engine displacement of 1.8 L, and its highway fuel consumption is 36 mi/gal.

02

State the best regression equation

The city fuel consumption is predicted using seven different models as stated in the table. With reference to exercise 11, the best regression equation is:

\(CITY = - 3.15 + 0.819\;HWY\), as it has maximum value for R-squared and adjusted R-squared measure and there is no significant increase in the measure with the additional variable in the study.

03

Compute the best predicted value of city fuel consumption

The best predicted value of city fuel consumption is given as,

\(\begin{array}{c}{\rm{CITY}} = - 3.15 + 0.819\left( {36} \right)\\ = 26.334\end{array}\)

Thus, the best predicted value of city fuel consumption is 26.3 mi/gal.

04

State if the predicted value is a good estimate and accurate

A predicted value is a good estimate as the model chosen for prediction has a high value of R-squared and adjusted R-squared measurement.

Thus, the predicted value is likely to be a good estimate because of lower P-value (0.0000) and optimal adjusted\({R^2}\)value (0.920).

The predicted value may not be accurate as the number of observations taken for prediction is only 21, which is relatively low.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Sports Repeat the preceding exercise using diameters and volumes.

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

Head widths (in.) and weights (lb) were measured for 20 randomly selected bears (from Data Set 9 “Bear Measurements” in Appendix B). The 20 pairs of measurements yield\(\bar x = 6.9\)in.,\(\bar y = 214.3\)lb, r= 0.879, P-value = 0.000, and\(\hat y = - 212 + 61.9x\). Find the best predicted value of\(\hat y\)(weight) given a bear with a head width of 6.5 in.

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 50 randomly selected speed dates, attractiveness ratings by males of their

female date partners (x) are recorded along with the attractiveness ratings by females of their male date partners (y); the ratings are from Data Set 18 “Speed Dating” in Appendix B. The 50 paired ratings yield\(\bar x = 6.5\),\(\bar y = 5.9\), r= -0.277, P-value = 0.051, and\(\hat y = 8.18 - 0.345x\). Find the best predicted value of\(\hat y\)(attractiveness rating by female of male) for a date in which the attractiveness rating by the male of the female is x= 8.

Exercises 13–28 use the same data sets as Exercises 13–28 in Section 10-1. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5 on page 493.

Using the listed lemon/crash data, find the best predicted crash fatality rate for a year in which there are 500 metric tons of lemon imports. Is the prediction worthwhile?

Coefficient of Determination Using the heights and weights described in Exercise 1, the linear correlation coefficient r is 0.394. Find the value of the coefficient of determination. What practical information does the coefficient of determination provide?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free