Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, StatCrunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.

Predicting Manatee Fatalities Using x = 85 (for 850,000 registered boats), what is the single value that is the best predicted number of manatee fatalities resulting from encounters with boats?

Short Answer

Expert verified

The single value that is the best-predicted number of manatee fatalities when there are 850,000 registered boats is 70.5.

Step by step solution

01

Given information

Results are obtained for the linear relation between the variables “number of registered boats” and “number of manatee deaths” using StatCrunch.

02

Step 2:Single predicted value

It can be observed in the results table that the single predicted value of Y(number of manatee fatalities) for the given value of X(registered boats) at 850,000 is obtained as 70.481772 (approximately 70.5).

Thus, the predicted value of Y (number of manatee fatalities) is 70.5.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explore! Exercises 9 and 10 provide two data sets from “Graphs in Statistical Analysis,” by F. J. Anscombe, the American Statistician, Vol. 27. For each exercise,

a. Construct a scatterplot.

b. Find the value of the linear correlation coefficient r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables.

c. Identify the feature of the data that would be missed if part (b) was completed without constructing the scatterplot.

x

10

8

13

9

11

14

6

4

12

7

5

y

9.14

8.14

8.74

8.77

9.26

8.10

6.13

3.10

9.13

7.26

4.74

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

Revised mpg Ratings Listed below are combined city-highway fuel economy ratings (in mi>gal) for different cars. The old ratings are based on tests used before 2008 and the new ratings are based on tests that went into effect in 2008. Is there sufficient evidence to conclude that there is a linear correlation between the old ratings and the new ratings? What do the data suggest about the old ratings?

Old

16

27

17

33

28

24

18

22

20

29

21

New

15

24

15

29

25

22

16

20

18

26

19

Finding a Prediction Interval. In Exercises 13–16, use the paired data consisting of registered Florida boats (tens of thousands) and manatee fatalities from boat encounters listed in Data Set 10 “Manatee Deaths” in Appendix B. Let x represent number of registered boats and let y represent the corresponding number of manatee deaths. Use the given number of registered boats and the given confidence level to construct a prediction interval estimate of manatee deaths.

Boats Use x = 85 (for 850,000 registered boats) with a 99% confidence level.

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

CSI Statistics Police sometimes measure shoe prints at crime scenes so that they can learn something about criminals. Listed below are shoe print lengths, foot lengths, and heights of males (from Data Set 2 “Foot and Height” in Appendix B). Is there sufficient evidence to conclude that there is a linear correlation between shoe print lengths and heights of males? Based on these results, does it appear that police can use a shoe print length to estimate the height of a male?

Shoe print(cm)

29.7

29.7

31.4

31.8

27.6

Foot length(cm)

25.7

25.4

27.9

26.7

25.1

Height (cm)

175.3

177.8

185.4

175.3

172.7

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

POTUS Media periodically discuss the issue of heights of winning presidential candidates and heights of their main opponents. Listed below are those heights (cm) from severalrecent presidential elections (from Data Set 15 “Presidents” in Appendix B). Is there sufficient evidence to conclude that there is a linear correlation between heights of winning presidential candidates and heights of their main opponents? Should there be such a correlation?

President

178

182

188

175

179

183

192

182

177

185

188

188

183

188

Opponent

180

180

182

173

178

182

180

180

183

177

173

188

185

175

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free