Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Interpreting a Computer Display. In Exercises 9–12, refer to the display obtained by using the paired data consisting of Florida registered boats (tens of thousands) and numbers of manatee deaths from encounters with boats in Florida for different recent years (from Data Set 10 in Appendix B). Along with the paired boat, manatee sample data, Stat Crunch was also given the value of 85 (tens of thousands) boats to be used for predicting manatee fatalities.


Testing for Correlation Use the information provided in the display to determine the value of the linear correlation coefficient. Is there sufficient evidence to support a claim of a linear correlation between numbers of registered boats and numbers of manatee deaths from encounters with boats?

Short Answer

Expert verified

The linear correlation coefficient is 0.85014394.

There is sufficient evidence to support the claim that the variables “number of registered boats” and “number of manatee deaths from encounters with boats” are linearly related.

Step by step solution

01

Given information

Results are obtained for the linear relation between the variables “number of registered boats” and “number of manatee deaths” using StatCrunch.

02

Correlation coefficient

The linear correlation between the two variables is shown in the results obtained using StatCrunch and is equal to 0.85014394.

03

Significance of correlation

The researcher wants to test the claim that there is a linear correlation between the variables number of registered boats and the number of manatee deaths from encounters with boats.

Let\(\rho \)represent the linear correlation coefficient of the population.

The statistical hypothesis is given below:

\(\begin{array}{l}{H_0}:\rho = 0\\{H_1}:\rho \ne 0\end{array}\)

Here,

\(\begin{array}{l}r = 0.850\\n = 24\end{array}\)

The degrees of freedom (df) is given as follows:

\(\begin{array}{c}df = n - 2\\ = 24 - 2\\ = 22\end{array}\)

The two-tailed critical values of rat df = 22 and at a significance level of 0.05 are obtained as –404 and 0.404.

Since the given value of the linear correlation coefficient (0.850) lies beyond the upper critical value of 0.404, the null hypothesis is rejected.

Thus, there issufficient evidence to support the claim of a linear correlation between the numbers of registered boats and number of manatee deaths from encounters with boats.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Interpreting\({R^2}\)In Exercise 2, the quadratic model results in = 0.255. Identify the percentage of the variation in Super Bowl points that can be explained by the quadratic model relating the variable of year and the variable of points scored. (Hint: See Example 2.) What does the result suggest about the usefulness of the quadratic model?

Identifying a Model and\({R^2}\)Different samples are collected, and each sample consists of IQ scores of 25 statistics students. Let x represent the standard deviation of the 25 IQ scores in a sample, and let y represent the variance of the 25 IQ scores in a sample. What formula best describes the relationship between x and y? Which of the five models describes this relationship? What should be the value of\({R^2}\)?

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of A = 0.05. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)

CPI and the Subway Use CPI>subway data from the preceding exercise to determine whether there is a significant linear correlation between the CPI (Consumer Price Index) and the subway fare.

Cigarette Nicotine and Carbon Monoxide Refer to the table of data given in Exercise 1 and use the amounts of nicotine and carbon monoxide (CO).

a. Construct a scatterplot using nicotine for the xscale, or horizontal axis. What does the scatterplot suggest about a linear correlation between amounts of nicotine and carbon monoxide?

b. Find the value of the linear correlation coefficient and determine whether there is sufficient evidence to support a claim of a linear correlation between amounts of nicotine and carbon monoxide.

c. Letting yrepresent the amount of carbon monoxide and letting xrepresent the amount of nicotine, find the regression equation.

d. The Raleigh brand king size cigarette is not included in the table, and it has 1.3 mg of nicotine. What is the best predicted amount of carbon monoxide?

Tar

25

27

20

24

20

20

21

24

CO

18

16

16

16

16

16

14

17

Nicotine

1.5

1.7

1.1

1.6

1.1

1.0

1.2

1.4

let the predictor variable x be the first variable given. Use the given data to find the regression equation and the best predicted value of the response variable. Be sure to follow the prediction procedure summarized in Figure 10-5 on page 493. Use a 0.05 significance level.

For 50 randomly selected speed dates, attractiveness ratings by males of their

female date partners (x) are recorded along with the attractiveness ratings by females of their male date partners (y); the ratings are from Data Set 18 “Speed Dating” in Appendix B. The 50 paired ratings yield\(\bar x = 6.5\),\(\bar y = 5.9\), r= -0.277, P-value = 0.051, and\(\hat y = 8.18 - 0.345x\). Find the best predicted value of\(\hat y\)(attractiveness rating by female of male) for a date in which the attractiveness rating by the male of the female is x= 8.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free