Chapter 9: Problem 76
Prove: (a) The equation $$ \begin{aligned} a_{0} u^{(n)}+& \frac{p^{(n-1)}(\alpha)}{(n-1) !} u^{(n-1)}+\frac{p^{(n-2)}(\alpha)}{(n-2) !} u^{(n-2)}+\cdots+p(\alpha) u \\ =&\left(p_{0}+p_{1} x+\cdots+p_{k} x^{k}\right) \cos \omega x \\ &+\left(q_{0}+q_{1} x+\cdots+q_{k} x^{k}\right) \sin \omega x \end{aligned} $$ has a particular solution of the form $$ u_{p}=x^{m}\left(u_{0}+u_{1} x+\cdots+u_{k} x^{k}\right) \cos \omega x+\left(v_{0}+v_{1} x+\cdots+v_{k} x^{k}\right) \sin \omega x $$ (b) If \(\lambda+i \omega\) is a zero of \(p\) with multiplicity \(m \geq 1,\) then \((\mathrm{A})\) can be written as $$ a\left(u^{\prime \prime}+\omega^{2} u\right)=\left(p_{0}+p_{1} x+\cdots+p_{k} x^{k}\right) \cos \omega x+\left(q_{0}+q_{1} x+\cdots+q_{k} x^{k}\right) \sin \omega x $$ which has a particular solution of the form $$ u_{p}=U(x) \cos \omega x+V(x) \sin \omega x $$ where $$ U(x)=u_{0} x+u_{1} x^{2}+\cdots+u_{k} x^{k+1}, V(x)=v_{0} x+v_{1} x^{2}+\cdots+v_{k} x^{k+1} $$ and $$ \begin{aligned} a\left(U^{\prime \prime}(x)+2 \omega V^{\prime}(x)\right) &=p_{0}+p_{1} x+\cdots+p_{k} x^{k} \\ a\left(V^{\prime \prime}(x)-2 \omega U^{\prime}(x)\right) &=q_{0}+q_{1} x+\cdots+q_{k} x^{k} . \end{aligned} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.