Chapter 9: Problem 6
Verify that the given functions are solutions of the given equation, and show that they form a fundamental set of solutions of the equation on any interval on which the equation is normal. (a) \(y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0 ; \quad\left\\{e^{x}, e^{-x}, x e^{-x}\right\\}\) (b) \(y^{\prime \prime \prime}-3 y^{\prime \prime}+7 y^{\prime}-5 y=0 ; \quad\left\\{e^{x}, e^{x} \cos 2 x, e^{x} \sin 2 x\right\\}\). (c) \(x y^{\prime \prime \prime}-y^{\prime \prime}-x y^{\prime}+y=0 ; \quad\left\\{e^{x}, e^{-x}, x\right\\}\) (d) \(x^{2} y^{\prime \prime \prime}+2 x y^{\prime \prime}-\left(x^{2}+2\right) y=0 ; \quad\left\\{e^{x} / x, e^{-x} / x, 1\right\\}\) (e) \(\left(x^{2}-2 x+2\right) y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0 ; \quad\left\\{x, x^{2}, e^{x}\right\\}\) (f) \((2 x-1) y^{(4)}-4 x y^{\prime \prime \prime}+(5-2 x) y^{\prime \prime}+4 x y^{\prime}-4 y=0 ; \quad\left\\{x, e^{x}, e^{-x}, e^{2 x}\right\\}\) (g) \(x y^{(4)}-y^{\prime \prime \prime}-4 x y^{\prime}+4 y^{\prime}=0 ; \quad\left\\{1, x^{2}, e^{2 x}, e^{-2 x}\right\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.