Use the method suggested by Exercise 23 to find a linear homogeneous equation
such that the given set of functions is a fundamental set of solutions on
intervals on which the Wronskian of the set has no zeros.
(a) \(\left\\{x, x^{2}-1, x^{2}+1\right\\}\)
(b) \(\left\\{e^{x}, e^{-x}, x\right\\}\)
(c) \(\left\\{e^{x}, x e^{-x}, 1\right\\}\)
(d) \(\left\\{x, x^{2}, e^{x}\right\\}\)
(e) \(\left\\{x, x^{2}, 1 / x\right\\}\)
(f) \(\left\\{x+1, e^{x}, e^{3 x}\right\\}\)
(g) \(\left\\{x, x^{3}, 1 / x, 1 / x^{2}\right\\}\)
(h) \(\left\\{x, x \ln x, 1 / x, x^{2}\right\\}\)
(i) \(\left\\{e^{x}, e^{-x}, x, e^{2 x}\right\\}\)
(j) \(\left\\{e^{2 x}, e^{-2 x}, 1, x^{2}\right\\}\)