Suppose \(\left\\{y_{1}, y_{2}, \ldots, y_{n}\right\\}\) is a fundamental set of
solutions of
$$
P_{0}(x) y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=0
$$
on \((a, b),\) and let
$$
\begin{aligned}
z_{1} &=a_{11} y_{1}+a_{12} y_{2}+\cdots+a_{1 n} y_{n} \\
z_{2} &=a_{21} y_{1}+a_{22} y_{2}+\cdots+a_{2 n} y_{n} \\
& \vdots \vdots \vdots \\
z_{n} &=a_{n 1} y_{1}+a_{n 2} y_{2}+\cdots+a_{n n} y_{n},
\end{aligned}
$$
where the \(\left\\{a_{i j}\right\\}\) are constants. Show that \(\left\\{z_{1},
z_{2}, \ldots, z_{n}\right\\}\) is a fundamental set of solutions of
\((\mathrm{A})\) if and only if the determinant
$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$
is nonzero.HINT: The determinant of a product of \(n \times n\) matrices equals
the product of the deter-