Chapter 9: Problem 1
Verify that the given function is the solution of the initial value problem. (a) \(x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=-\frac{24}{x}, \quad y(-1)=0, y^{\prime}(-1)=0, \quad y^{\prime \prime}(-1)=0 ;\) $$ \begin{array}{l}y=-6 x-8 x^{2}-3 x^{3}+\frac{1}{x} \\ \text { (b) } y^{\prime \prime \prime}-\frac{1}{x} y^{\prime \prime}-y^{\prime}+\frac{1}{x} y=\frac{x^{2}-4}{x^{4}}, \quad y(1)=\frac{3}{2}, \quad y^{\prime}(1)=\frac{1}{2}, y^{\prime \prime}(1)=1 ; \\ y=x+\frac{1}{2 x}\end{array} $$ (c) \(x y^{\prime \prime \prime}-y^{\prime \prime}-x y^{\prime}+y=x^{2}, \quad y(1)=2, \quad y^{\prime}(1)=5, \quad y^{\prime \prime}(1)=-1 ;\) \(y=-x^{2}-2+2 e^{(x-1)}-e^{-(x-1)}+4 x\) (d) \(4 x^{3} y^{\prime \prime \prime}+4 x^{2} y^{\prime \prime}-5 x y^{\prime}+2 y=30 x^{2}, \quad y(1)=5, \quad y^{\prime}(1)=\frac{17}{2} ;\) (e) \(x^{4} y^{(4)}-4 x^{3} y^{\prime \prime \prime}+12 x^{2} y^{\prime \prime}-24 x y^{\prime}+24 y=6 x^{4}, \quad y(1)=-2,\) \(y^{\prime}(1)=-9, \quad y^{\prime \prime}(1)=-27, \quad y^{\prime \prime \prime}(1)=-52 ;\) \(y=x^{4} \ln x+x-2 x^{2}+3 x^{3}-4 x^{4}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.