In addition to the assumptions of Exercise 30 , assume that
$$
\left|f_{m}(t)\right| \leq M e^{s_{0} t}, t \geq t_{m}, m=0,1, \ldots
$$
and that the series
$$
\sum_{m=0}^{\infty} e^{-\rho t_{m}}
$$
converges for some \(\rho>0\). Using the steps listed below, show that
\(\mathcal{L}(f)\) is defined for \(s>s_{0}\) and
$$
\begin{array}{c}
\mathcal{L}(f)=\mathcal{L}\left(f_{0}\right)+\sum_{m=1}^{\infty} e^{-s t_{m}}
\mathcal{L}\left(g_{m}\right) \\
\text { for } s>s_{0}+\rho, \text { where } \\
\qquad g_{m}(t)=f_{m}\left(t+t_{m}\right)-f_{m-1}\left(t+t_{m}\right).
\end{array}
$$
(a) Use (A) and Theorem 8.1 .6 to show that
$$
\mathcal{L}(f)=\sum_{m=0}^{\infty} \int_{t_{m}}^{t_{m+1}} e^{-s t} f_{m}(t) d
t
$$
is defined for \(s>s_{0}\)
(b) Show that (D) can be rewritten as
$$
\mathcal{L}(f)=\sum_{m=0}^{\infty}\left(\int_{t_{m}}^{\infty} e^{-s t}
f_{m}(t) d t-\int_{t_{m+1}}^{\infty} e^{-s t} f_{m}(t) d t\right).
$$
(c) Use (A), the assumed convergence of (B), and the comparison test to show
that the series
$$
\sum_{m=0}^{\infty} \int_{t_{m}}^{\infty} e^{-s t} f_{m}(t) d t \quad \text {
and } \quad \sum_{m=0}^{\infty} \int_{t_{m+1}}^{\infty} e^{-s t} f_{m}(t) d t
$$
both converge (absolutely) if \(s>s_{0}+\rho\)
(d) Show that (E) can be rewritten as
$$
\mathcal{L}(f)=\mathcal{L}\left(f_{0}\right)+\sum_{m=1}^{\infty}
\int_{t_{m}}^{\infty} e^{-s t}\left(f_{m}(t)-f_{m-1}(t)\right) d t
$$
if \(s>s_{0}+\rho\)
(e) Complete the proof of (C).