Chapter 8: Problem 30
Solve the initial value problem. Find a formula that does not involve step functions and represents \(y\) on each subinterval of \([0, \infty)\) on which the forcing function is zero. (a) \(y^{\prime \prime}-y=\sum_{k=1}^{\infty} \delta(t-k), \quad y(0)=0, \quad y^{\prime}(0)=1\) (b) \(y^{\prime \prime}+y=\sum_{k=1}^{\infty} \delta(t-2 k \pi), \quad y(0)=0, \quad y^{\prime}(0)=1\) (c) \(y^{\prime \prime}-3 y^{\prime}+2 y=\sum_{k=1}^{\infty} \delta(t-k), \quad y(0)=0, \quad y^{\prime}(0)=1\) (d) \(y^{\prime \prime}+y=\sum_{k=1}^{\infty} \delta(t-k \pi), \quad y(0)=0, \quad y^{\prime}(0)=0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.