Chapter 8: Problem 2
Find the Laplace transform. (a) \(\int_{0}^{t} \sin a \tau \cos b(t-\tau) d \tau\) (b) \(\int_{0}^{t} e^{\tau} \sin a(t-\tau) d \tau\) (c) \(\int_{0}^{t} \sinh a \tau \cosh a(t-\tau) d \tau\) (d) \(\int_{0}^{t} \tau(t-\tau) \sin \omega \tau \cos \omega(t-\tau) d \tau\) (e) \(e^{t} \int_{0}^{t} \sin \omega \tau \cos \omega(t-\tau) d \tau\) (f) \(e^{t} \int_{0}^{t} \tau^{2}(t-\tau) e^{\tau} d \tau\) (g) \(e^{-t} \int_{0}^{t} e^{-\tau} \tau \cos \omega(t-\tau) d \tau\) (h) \(e^{t} \int_{0}^{t} e^{2 \tau} \sinh (t-\tau) d \tau\) (i) \(\int_{0}^{t} \tau e^{2 \tau} \sin 2(t-\tau) d \tau\) (j) \(\int_{0}^{t}(t-\tau)^{3} e^{\tau} d \tau\) (k) \(\int_{0}^{t} \tau^{6} e^{-(t-\tau)} \sin 3(t-\tau) d \tau\) (I) \(\int_{0}^{t} \tau^{2}(t-\tau)^{3} d \tau\) \((\mathbf{m}) \int_{0}^{t}(t-\tau)^{7} e^{-\tau} \sin 2 \tau d \tau\) (n) \(\int_{0}^{t}(t-\tau)^{4} \sin 2 \tau d \tau\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.