Chapter 7: Problem 59
Let $$ L y=x^{2}\left(\alpha_{0}+\alpha_{q} x^{q}\right) y^{\prime \prime}+x\left(\beta_{0}+\beta_{q} x^{q}\right) y^{\prime}+\left(\gamma_{0}+\gamma_{q} x^{q}\right) y $$ where \(q\) is a positive integer, and define $$ p_{0}(r)=\alpha_{0} r(r-1)+\beta_{0} r+\gamma_{0} \quad \text { and } \quad p_{q}(r)=\alpha_{q} r(r-1)+\beta_{q} r+\gamma_{q} $$ (a) Show that if $$ y(x, r)=x^{r} \sum_{m=0}^{\infty} a_{q m}(r) x^{q m} $$ where $$ \begin{aligned} a_{0}(r) &=1 \\ a_{q m}(r) &=-\frac{p_{q}(q(m-1)+r)}{p_{0}(q m+r)} a_{q(m-1)}(r), \quad m \geq 1 \end{aligned} $$ then $$ L y(x, r)=p_{0}(r) x^{r} $$ (b) Deduce from (7.5.1) that $$ a_{q m}(r)=(-1)^{m} \prod_{j=1}^{m} \frac{p_{q}(q(j-1)+r)}{p_{0}(q j+r)} $$ (c) Conclude that if \(p_{0}(r)=\alpha_{0}\left(r-r_{1}\right)\left(r-r_{2}\right)\) where \(r_{1}-r_{2}\) is not an integer multiple of \(q\), then $$ y_{1}=x^{r_{1}} \sum_{m=0}^{\infty} a_{q m}\left(r_{1}\right) x^{q m} \quad \text { and } \quad y_{2}=x^{r_{2}} \sum_{m=0}^{\infty} a_{q m}\left(r_{2}\right) x^{q m} $$ form a fundamental set of Frobenius solutions of \(L y=0\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.