Chapter 7: Problem 56
Let $$ L y=x^{2}\left(\alpha_{0}+\alpha_{2} x^{2}\right) y^{\prime \prime}+x\left(\beta_{0}+\beta_{2} x^{2}\right) y^{\prime}+\left(\gamma_{0}+\gamma_{2} x^{2}\right) y=0 $$ and define $$ p_{0}(r)=\alpha_{0} r(r-1)+\beta_{0} r+\gamma_{0} \quad \text { and } \quad p_{2}(r)=\alpha_{2} r(r-1)+\beta_{2} r+\gamma_{2} $$ (a) Use Theorem 7.5.2 to show that if $$ \begin{aligned} a_{0}(r) &=1, \\ p_{0}(2 m+r) a_{2 m}(r)+p_{2}(2 m+r-2) a_{2 m-2}(r) &=0, \quad m \geq 1, \end{aligned} $$ then the Frobenius series \(y(x, r)=x^{r} \sum_{m=0}^{\infty} a_{2 m} x^{2 m}\) satisfies \(L y(x, r)=p_{0}(r) x^{r}\). (b) Deduce from ( 7.5 .1 ) that if \(p_{0}(2 m+r)\) is nonzero for every positive integer \(m\) then $$ a_{2 m}(r)=(-1)^{m} \prod_{j=1}^{m} \frac{p_{2}(2 j+r-2)}{p_{0}(2 j+r)} $$ (c) Conclude that if \(p_{0}(r)=\alpha_{0}\left(r-r_{1}\right)\left(r-r_{2}\right)\) where \(r_{1}-r_{2}\) is not an even integer, then $$ y_{1}=x^{r_{1}} \sum_{m=0}^{\infty} a_{2 m}\left(r_{1}\right) x^{2 m} \quad \text { and } \quad y_{2}=x^{r_{2}} \sum_{m=0}^{\infty} a_{2 m}\left(r_{2}\right) x^{2 m} $$ form a fundamental set of Frobenius solutions of \(L y=0 .\) (d) Show that if \(p_{0}\) satisfies the hypotheses of (c) then $$ y_{1}=x^{r_{1}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{2^{m} m ! \prod_{j=1}^{m}\left(2 j+r_{1}-r_{2}\right)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m} x^{2 m} $$ and $$ y_{2}=x^{r_{2}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{2^{m} m ! \prod_{j=1}^{m}\left(2 j+r_{2}-r_{1}\right)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m} x^{2 m} $$ form a fundamental set of Frobenius solutions of $$ \alpha_{0} x^{2} y^{\prime \prime}+\beta_{0} x y^{\prime}+\left(\gamma_{0}+\gamma_{2} x^{2}\right) y=0 $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.