Chapter 7: Problem 54
(a) Verify that $$ \frac{d}{d x}\left(|x|^{r} x^{n}\right)=(n+r)|x|^{r} x^{n-1} \quad \text { and } \quad \frac{d^{2}}{d x^{2}}\left(|x|^{r} x^{n}\right)=(n+r)(n+r-1)|x|^{r} x^{n-2} $$ if \(x \neq 0\) (b) Let $$ L y=x^{2}\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}\right) y^{\prime \prime}+x\left(\beta_{0}+\beta_{1} x+\beta_{2} x^{2}\right) y^{\prime}+\left(\gamma_{0}+\gamma_{1} x+\gamma_{2} x^{2}\right) y=0 $$ Show that if \(x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}\) is a solution of \(L y=0\) on \((0, \rho)\) then \(|x|^{r} \sum_{n=0}^{\infty} a_{n} x^{n}\) is a solution on \((-\rho, 0)\) and \((0, \rho)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.