Chapter 7: Problem 5
For each power series use the result of Exercise 4 to find the radius of convergence \(R\). If \(R>0\), find the open interval of convergence. (a) \(\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(27)^{m}}(x-3)^{3 m+2}\) (b) \(\sum_{m=0}^{\infty} \frac{x^{7 m+6}}{m}\) (c) \(\sum_{m=0}^{\infty} \frac{9^{m}(m+1)}{(m+2)}(x-3)^{4 m+2}\) (d) \(\sum_{m=0}^{\infty}(-1)^{m} \frac{2^{m}}{m !} x^{4 m+3}\) (e) \(\sum_{m=0}^{\infty} \frac{m !}{(26)^{m}}(x+1)^{4 m+3}\) (f) \(\sum_{m=0}^{\infty} \frac{(-1)^{m}}{8^{m} m(m+1)}(x-1)^{3 m+1}\)