Chapter 7: Problem 5
Find the power series in \(x\) for the general solution. $$ \left(1+2 x^{2}\right) y^{\prime \prime}+7 x y^{\prime}+2 y=0 $$
Chapter 7: Problem 5
Find the power series in \(x\) for the general solution. $$ \left(1+2 x^{2}\right) y^{\prime \prime}+7 x y^{\prime}+2 y=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients. \(x\left(1+x^{2}\right) y^{\prime \prime}+\left(1-x^{2}\right) y^{\prime}-8 x y=0\)
Find a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients. \(x^{2}(1-2 x) y^{\prime \prime}+3 x y^{\prime}+(1+4 x) y=0\)
Find a fundamental set of Frobenius solutions. Compute the terms involving \(x^{2 m+r_{1}}\), where \(0 \leq m \leq M(M\) at least 3\()\) and \(r_{1}\) is the root of the indicial equation. Optionally, write a computer program to implement the applicable recurrence formulas and take \(M>3\). \(x^{2}\left(1-2 x^{2}\right) y^{\prime \prime}+x\left(5-9 x^{2}\right) y^{\prime}+\left(4-3 x^{2}\right) y=0\)
Find a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients. $$ 4 x^{2}(1+x) y^{\prime \prime}+4 x(3+8 x) y^{\prime}-(5-49 x) y=0 $$
Let $$ L y=\alpha_{0} x^{2} y^{\prime \prime}+\beta_{0} x y^{\prime}+\left(\gamma_{0}+\gamma_{2} x^{2}\right) y $$ and define $$ p_{0}(r)=\alpha_{0} r(r-1)+\beta_{0} r+\gamma_{0} $$ Show that if $$ p_{0}(r)=\alpha_{0}\left(r-r_{1}\right)\left(r-r_{2}\right) $$ where \(r_{1}-r_{2}=2 k,\) an even positive integer, then \(L y=0\) has the solutions $$ y_{1}=x^{r_{1}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{4^{m} m ! \prod_{j=1}^{m}(j+k)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m} x^{2 m} $$ and $$ \begin{aligned} y_{2}=& x^{r_{2}} \sum_{m=0}^{k-1} \frac{(-1)^{m}}{4^{m} m ! \prod_{j=1}^{m}(j-k)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m} x^{2 m} \\\ &-\frac{2}{4^{k} k !(k-1) !}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{k}\left(y_{1} \ln x-\frac{x^{r_{1}}}{2} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{4^{m} m ! \prod_{j=1}^{m}(j+k)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m}\left(\sum_{j=1}^{m} \frac{2 j+k}{j(j+k)}\right) x^{2 m}\right) \end{aligned} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.