Chapter 7: Problem 47
Let $$ L y=\alpha_{0} x^{2} y^{\prime \prime}+\beta_{0} x y^{\prime}+\left(\gamma_{0}+\gamma_{2} x^{2}\right) y $$ and define $$ p_{0}(r)=\alpha_{0} r(r-1)+\beta_{0} r+\gamma_{0} $$ Show that if $$ p_{0}(r)=\alpha_{0}\left(r-r_{1}\right)\left(r-r_{2}\right) $$ where \(r_{1}-r_{2}=2 k,\) an even positive integer, then \(L y=0\) has the solutions $$ y_{1}=x^{r_{1}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{4^{m} m ! \prod_{j=1}^{m}(j+k)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m} x^{2 m} $$ and $$ \begin{aligned} y_{2}=& x^{r_{2}} \sum_{m=0}^{k-1} \frac{(-1)^{m}}{4^{m} m ! \prod_{j=1}^{m}(j-k)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m} x^{2 m} \\\ &-\frac{2}{4^{k} k !(k-1) !}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{k}\left(y_{1} \ln x-\frac{x^{r_{1}}}{2} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{4^{m} m ! \prod_{j=1}^{m}(j+k)}\left(\frac{\gamma_{2}}{\alpha_{0}}\right)^{m}\left(\sum_{j=1}^{m} \frac{2 j+k}{j(j+k)}\right) x^{2 m}\right) \end{aligned} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.