Under the assumptions of Theorem 7.6.2, suppose the power series
$$\sum_{n=0}^{\infty} a_{n}\left(r_{1}\right) x^{n} \quad \text { and } \quad
\sum_{n=1}^{\infty} a_{n}^{\prime}\left(r_{1}\right) x^{n}$$
converge on \((-\rho, \rho)\)
(a) Show that
$$y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} a_{n}\left(r_{1}\right) x^{n} \quad
\text { and } \quad y_{2}=y_{1} \ln x+x^{r_{1}} \sum_{n=1}^{\infty}
a_{n}^{\prime}\left(r_{1}\right) x^{n}$$
are linearly independent on \((0, \rho) .\) HINT: Show that if \(c_{1}\) and
\(c_{2}\) are constants such that \(c_{1} y_{1}+c_{2} y_{2} \equiv 0\) on \((0,
\rho),\) then
$$\left(c_{1}+c_{2} \ln x\right) \sum_{n=0}^{\infty} a_{n}\left(r_{1}\right)
x^{n}+c_{2} \sum_{n=1}^{\infty} a_{n}^{\prime}\left(r_{1}\right) x^{n}=0,
\quad 0