Let
$$L y=x^{2}\left(\alpha_{0}+\alpha_{1} x\right) y^{\prime
\prime}+x\left(\beta_{0}+\beta_{1} x\right)
y^{\prime}+\left(\gamma_{0}+\gamma_{1} x\right) y$$
and define
$$p_{0}(r)=\alpha_{0} r(r-1)+\beta_{0} r+\gamma_{0} \quad \text { and } \quad
p_{1}(r)=\alpha_{1} r(r-1)+\beta_{1} r+\gamma_{1}$$
Theorem 7.6 .1 and Exercise \(7.5 .55(\) a \()\) imply that if
$$y(x, r)=x^{r} \sum_{n=0}^{\infty} a_{n}(r) x^{n}$$
where
$$a_{n}(r)=(-1)^{n} \prod_{j=1}^{n} \frac{p_{1}(j+r-1)}{p_{0}(j+r)}$$
then
$$
L y(x, r)=p_{0}(r) x^{r}
$$
Now suppose \(p_{0}(r)=\alpha_{0}\left(r-r_{1}\right)^{2}\) and
\(p_{1}\left(k+r_{1}\right) \neq 0\) if \(k\) is a nonnegative integer.
(a) Show that \(L y=0\) has the solution
$$y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} a_{n}\left(r_{1}\right) x^{n}$$
where
$$a_{n}\left(r_{1}\right)=\frac{(-1)^{n}}{\alpha_{0}^{n}(n !)^{2}}
\prod_{j=1}^{n} p_{1}\left(j+r_{1}-1\right)$$
(b) Show that \(L y=0\) has the second solution
$$y_{2}=y_{1} \ln x+x^{r_{1}} \sum_{n=1}^{\infty} a_{n}\left(r_{1}\right)
J_{n} x^{n}$$
where
$$J_{n}=\sum_{j=1}^{n}
\frac{p_{1}^{\prime}\left(j+r_{1}-1\right)}{p_{1}\left(j+r_{1}-1\right)}-2
\sum_{j=1}^{n} \frac{1}{j}$$
(c) Conclude from (a) and (b) that if \(\gamma_{1} \neq 0\) then
$$y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n
!)^{2}}\left(\frac{\gamma_{1}}{\alpha_{0}}\right)^{n} x^{n}$$
and
$$y_{2}=y_{1} \ln x-2 x^{r_{1}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n
!)^{2}}\left(\frac{\gamma_{1}}{\alpha_{0}}\right)^{n}\left(\sum_{j=1}^{n}
\frac{1}{j}\right) x^{n}$$
are solutions of
$$\alpha_{0} x^{2} y^{\prime \prime}+\beta_{0} x
y^{\prime}+\left(\gamma_{0}+\gamma_{1} x\right) y=0$$
(The conclusion is also valid if \(\gamma_{1}=0\). Why?)