Chapter 7: Problem 10
Find the general solution of the given Euler equation on \((0, \infty)\). $$ 3 x^{2} y^{\prime \prime}-x y^{\prime}+y=0 $$
Chapter 7: Problem 10
Find the general solution of the given Euler equation on \((0, \infty)\). $$ 3 x^{2} y^{\prime \prime}-x y^{\prime}+y=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(a_{0}, \ldots, a_{N}\) for \(N\) at least 7 in the power series \(y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\) for the solution of the initial value problem. Take \(x_{0}\) to be the point where the initial conditions are imposed. $$ \left(5-6 x+3 x^{2}\right) y^{\prime \prime}+(x-1) y^{\prime}+12 y=0, \quad y(1)=-1, \quad y^{\prime}(1)=1 $$
Find a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients. $$ x^{2} y^{\prime \prime}+10 x y^{\prime}+(14+x) y=0 $$
(a) Deduce from Eqn. (7.5.20) that $$ a_{n}(r)=(-1)^{n} \prod_{j=1}^{n} \frac{p_{1}(j+r-1)}{p_{0}(j+r)} $$ (b) Conclude that if \(p_{0}(r)=\alpha_{0}\left(r-r_{1}\right)\left(r-r_{2}\right)\) where \(r_{1}-r_{2}\) is not an integer, then $$ y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} a_{n}\left(r_{1}\right) x^{n} \quad \text { and } \quad y_{2}=x^{r_{2}} \sum_{n=0}^{\infty} a_{n}\left(r_{2}\right) x^{n} $$ form a fundamental set of Frobenius solutions of $$ x^{2}\left(\alpha_{0}+\alpha_{1} x\right) y^{\prime \prime}+x\left(\beta_{0}+\beta_{1} x\right) y^{\prime}+\left(\gamma_{0}+\gamma_{1} x\right) y=0 . $$ (c) Show that if \(p_{0}\) satisfies the hypotheses of (b) then $$ y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n ! \prod_{j=1}^{n}\left(j+r_{1}-r_{2}\right)}\left(\frac{\gamma_{1}}{\alpha_{0}}\right)^{n} x^{n} $$ and $$ y_{2}=x^{r_{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n ! \prod_{j=1}^{n}\left(j+r_{2}-r_{1}\right)}\left(\frac{\gamma_{1}}{\alpha_{0}}\right)^{n} x^{n} $$ form a fundamental set of Frobenius solutions of $$ \alpha_{0} x^{2} y^{\prime \prime}+\beta_{0} x y^{\prime}+\left(\gamma_{0}+\gamma_{1} x\right) y=0 . $$
Find a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients. $$ 4 x^{2}(1+x) y^{\prime \prime}+4 x(1+2 x) y^{\prime}-(1+3 x) y=0 $$
Find a fundamental set of Frobenius solutions. Give explicit formulas for the coefficients. \(x^{2}(1-x) y^{\prime \prime}-x(3-5 x) y^{\prime}+(4-5 x) y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.