Consider the equation
$$
\left(1+\alpha x^{3}\right) y^{\prime \prime}+\beta x^{2} y^{\prime}+\gamma x
y=0
$$
and let \(p(n)=\alpha n(n-1)+\beta n+\gamma\). (The special case \(y^{\prime
\prime}-x y=0\) of (A) is Airy's equation.)
(a) Modify the argument used to prove Theorem 7.2 .2 to show that
$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$
is a solution of \((\mathrm{A})\) if and only if \(a_{2}=0\) and
$$
a_{n+3}=-\frac{p(n)}{(n+3)(n+2)} a_{n}, \quad n \geq 0
$$
(b) Show from (a) that \(a_{n}=0\) unless \(n=3 m\) or \(n=3 m+1\) for some
nonnegative integer \(m\), and that
$$
a_{3 m+3}=-\frac{p(3 m)}{(3 m+3)(3 m+2)} a_{3 m}, \quad m \geq 0
$$
and
$$
a_{3 m+4}=-\frac{p(3 m+1)}{(3 m+4)(3 m+3)} a_{3 m+1}, \quad m \geq 0
$$
where \(a_{0}\) and \(a_{1}\) may be specified arbitrarily.
(c) Conclude from
(b) that the power series in \(x\) for the general solution of \((\mathrm{A})\) is
$$
\begin{aligned}
y=& a_{0} \sum_{m=0}^{\infty}(-1)^{m}\left[\prod_{j=0}^{m-1} \frac{p(3 j)}{3
j+2}\right] \frac{x^{3 m}}{3^{m} m !} \\
&+a_{1} \sum_{m=0}^{\infty}(-1)^{m}\left[\prod_{j=0}^{m-1} \frac{p(3 j+1)}{3
j+4}\right] \frac{x^{3 m+1}}{3^{m} m !}
\end{aligned}
$$