Let \(L\) be as in Exercises 7.5 .57 and \(7.5 .58,\) and suppose the indicial
polynomial of \(L y=0\) is
$$
p_{0}(r)=\alpha_{0}\left(r-r_{1}\right)\left(r-r_{2}\right)
$$
with \(k=r_{1}-r_{2},\) where \(k\) is a positive integer. Define \(a_{0}(r)=1\) for
all \(r .\) If \(r\) is a real number such that \(p_{0}(n+r)\) is nonzero for all
positive integers \(n,\) define
$$
a_{n}(r)=-\frac{1}{p_{0}(n+r)} \sum_{j=1}^{n} p_{j}(n+r-j) a_{n-j}(r), n \geq
1
$$
and let
$$
y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} a_{n}\left(r_{1}\right) x^{n}
$$
Define
$$
a_{n}\left(r_{2}\right)=-\frac{1}{p_{0}\left(n+r_{2}\right)} \sum_{j=1}^{n}
p_{j}\left(n+r_{2}-j\right) a_{n-j}\left(r_{2}\right) \text { if } n \geq 1
\text { and } n \neq k
$$
and let \(a_{k}\left(r_{2}\right)\) be arbitrary.
(a) Conclude from Exercise 7.6..66 that
$$
L\left(y_{1} \ln x+x^{r_{1}} \sum_{n=1}^{\infty}
a_{n}^{\prime}\left(r_{1}\right) x^{n}\right)=k \alpha_{0} x^{r_{1}}
$$
(b) Conclude from Exercise \(7.5 . .57\) that
$$
L\left(x^{r_{2}} \sum_{n=0}^{\infty} a_{n}\left(r_{2}\right) x^{n}\right)=A
x^{r_{1}}
$$
where
$$
A=\sum_{j=1}^{k} p_{j}\left(r_{1}-j\right) a_{k-j}\left(r_{2}\right)
$$
(c) Show that \(y_{1}\) and
$$
y_{2}=x^{r_{2}} \sum_{n=0}^{\infty} a_{n}\left(r_{2}\right) x^{n}-\frac{A}{k
\alpha_{0}}\left(y_{1} \ln x+x^{r_{1}} \sum_{n=1}^{\infty}
a_{n}^{\prime}\left(r_{1}\right) x^{n}\right)
$$
form a fundamental set of Frobenius solutions of \(L y=0\).
(d) Show that choosing the arbitrary quantity \(a_{k}\left(r_{2}\right)\) to be
nonzero merely adds a multiple of \(y_{1}\) to \(y_{2} .\) Conclude that we may as
well take \(a_{k}\left(r_{2}\right)=0\).